Pregunta
- Find a Cartesian equation for the hyperbola centered at the
origin that has focus at
and the line
as the
corresponding directrix.
origin that has focus at
corresponding directrix.
Ask by Potter Henry. in Zambia
Mar 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The Cartesian equation of the hyperbola is
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To find the Cartesian equation of the hyperbola centered at the origin with a focus at
and a directrix at
, we start by identifying key components. The distance from the center to the focus is
and the distance from the center to the directrix is
. The formula that relates these is
, where
is the eccentricity. Here,
.
For hyperbolas, we have the relationship
. Knowing that
and substituting
gives us
.
Next, since
, we can write
, simplifying to
or
. Now, substituting
in our earlier equation:
Thus,
. The standard form of the hyperbola centered at the origin with a horizontal transverse axis is:
So, the Cartesian equation for the hyperbola is:
Enjoy twisting and turning through the curves of this hyperbola! Play with the concepts of foci and directrices for loads of fun! Hyperbolas pop up in various applications like satellite dishes and navigation systems – they’re absolutely iconic!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium