Pregunta
upstudy study bank question image url

12. Write a polynomial in factored form with zeros \( 5,6,7 \) and \( a=1 \)

Ask by Vega Dunn. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

One such polynomial is \( (x - 5)(x - 6)(x - 7) \).

Solución

To construct a polynomial in factored form with the given zeros \( 5, 6, 7 \) and a leading coefficient \( a = 1 \), you can use the fact that each zero corresponds to a factor of the polynomial. Specifically, a zero at \( x = c \) corresponds to a factor of \( (x - c) \). Given zeros at \( x = 5 \), \( x = 6 \), and \( x = 7 \), the polynomial can be written as: \[ f(x) = 1 \cdot (x - 5)(x - 6)(x - 7) \] Since the leading coefficient \( a = 1 \), it is often omitted for simplicity. Therefore, the polynomial in its simplest factored form is: \[ f(x) = (x - 5)(x - 6)(x - 7) \] **Final Answer:** After simplifying, one such polynomial is (x – 5) (x – 6) (x – 7).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To write a polynomial in factored form with zeros at \( 5, 6, \) and \( 7 \), you can use the fact that the polynomial can be expressed as \( (x - 5)(x - 6)(x - 7) \). Since \( a = 1 \), you don’t need to include any additional coefficients. So, the polynomial is: \[ f(x) = (x - 5)(x - 6)(x - 7) \] If you expand this, you’ll end up with a cubic polynomial, but in this case, we’re celebrating the beauty of the factored form! An interesting aspect of polynomials is how they relate to the shapes of their graphs. Since we have three distinct zeros, the graph of this polynomial will intersect the x-axis at the points \( 5, 6, \) and \( 7 \). Each zero corresponds to a "bounce" or "pass-through" at the x-axis, giving your polynomial a distinct shape and a chance for some creative interpretation if you're into sketching!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad