Pregunta
upstudy study bank question image url

In a triangle, the measure of the first angle is twice the measure of the second angle. The measure of the third angle is \( 92^{\circ} \) more than the measure of the second angle. Use the fact that the sum of the measures of the three angles of a triangle is \( 180^{\circ} \) to find the measure of each angle. The measure of the first angle is \( 44^{\circ} \). The measure of the second angle is \( 22^{\circ} \). The measure of the third angle is \( \square^{\circ} \).

Ask by Hobbs Guerrero. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The measures of the angles are: - First angle: \( 44^\circ \) - Second angle: \( 22^\circ \) - Third angle: \( 114^\circ \)

Solución

To find the measures of the angles in the triangle, let's denote the measures as follows: - Let the second angle be \( x \) degrees. - Therefore, the first angle is twice the second angle, which is \( 2x \) degrees. - The third angle is \( 92^\circ \) more than the second angle, which is \( x + 92^\circ \). Since the sum of the measures of the three angles in a triangle is \( 180^\circ \), we can set up the following equation: \[ 2x + x + (x + 92^\circ) = 180^\circ \] Combine like terms: \[ 4x + 92^\circ = 180^\circ \] Subtract \( 92^\circ \) from both sides: \[ 4x = 88^\circ \] Divide both sides by 4: \[ x = 22^\circ \] Now, substitute \( x = 22^\circ \) back into the expressions for the other angles: - **First angle:** \( 2x = 2 \times 22^\circ = 44^\circ \) - **Second angle:** \( x = 22^\circ \) - **Third angle:** \( x + 92^\circ = 22^\circ + 92^\circ = 114^\circ \) **Final Measures of the Angles:** - First Angle: \( 44^\circ \) - Second Angle: \( 22^\circ \) - Third Angle: \( \boxed{114^\circ} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The measure of the third angle can be found using the information given about the first and second angles. Since the sum of all angles in a triangle is \( 180^{\circ} \), we can set up the equation: First angle + Second angle + Third angle = \( 180^{\circ} \). Substituting in the known values: \( 44^{\circ} + 22^{\circ} + \text{Third angle} = 180^{\circ} \). This simplifies to: \( 66^{\circ} + \text{Third angle} = 180^{\circ} \). So, the measure of the third angle is: \( \text{Third angle} = 180^{\circ} - 66^{\circ} = 114^{\circ} \). The measure of the third angle is \( 114^{\circ} \). There you have it! Each angle comes together beautifully, just like a well-crafted story. In a triangle, every angle has its role, and when they align, they create a perfect balance in geometry! Mathematically, this triangle isn't just about angles; it gives thinkers a chance to dabble in logic and equations. After all, triangles are among the most fundamental shapes in the universe, appearing in everything from architecture to art. Keep exploring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad