Pregunta
upstudy study bank question image url

Question If \( \$ 200 \) is borrowed with an interest of \( 18.0 \% \) compounded monthly, what is the total amount of money needed to pay back in 1 year? Round your answer to the nearest cent. Do NOT round until you have calculated the final answer.

Ask by Burton Mejia. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total amount to pay back in 1 year is $239.12.

Solución

To find the total amount of money needed to pay back in 1 year when borrowing $200 with an interest of 18.0% compounded monthly, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the total amount of money needed to pay back, - \( P \) is the principal amount borrowed ($200), - \( r \) is the annual interest rate (18.0% or 0.18), - \( n \) is the number of times the interest is compounded per year (12 for monthly compounding), - \( t \) is the time in years (1 year). Substitute the given values into the formula: \[ A = 200 \left( 1 + \frac{0.18}{12} \right)^{12 \cdot 1} \] Now, we can calculate the total amount of money needed to pay back in 1 year. Calculate the value by following steps: - step0: Calculate: \(200\left(1+\frac{0.18}{12}\right)^{12}\) - step1: Divide the terms: \(200\left(1+\frac{3}{200}\right)^{12}\) - step2: Add the numbers: \(200\left(\frac{203}{200}\right)^{12}\) - step3: Simplify: \(200\times \frac{203^{12}}{200^{12}}\) - step4: Reduce the numbers: \(1\times \frac{203^{12}}{200^{11}}\) - step5: Multiply: \(\frac{203^{12}}{200^{11}}\) The total amount of money needed to pay back in 1 year when borrowing $200 with an interest of 18.0% compounded monthly is approximately $239.12. Therefore, the total amount of money needed to pay back in 1 year is $239.12.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the total amount owed after one year for a loan of \( \$200 \) with an 18.0% annual interest rate compounded monthly, you can use the formula for compound interest, \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is borrowed or invested for. For this scenario: - \( P = 200 \) - \( r = 0.18 \) - \( n = 12 \) - \( t = 1 \) Plugging in these values, the calculation will be: \[ A = 200 \left(1 + \frac{0.18}{12}\right)^{12 \times 1} \] \[ A = 200 \left(1 + 0.015\right)^{12} \] \[ A = 200 \left(1.015\right)^{12} \] Calculating \( (1.015)^{12} \): \[ (1.015)^{12} \approx 1.195618171 \] Now substituting that back into the formula: \[ A \approx 200 \times 1.195618171 \approx 239.1236342 \] Rounding to the nearest cent, the total amount needed to pay back in one year is approximately: \[ A \approx \$239.12 \] So, the total amount of money needed to pay back in 1 year is **$239.12**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad