Pregunta
upstudy study bank question image url

The weight of an organ in adult males has a bell-shaped distribution with a mean of 310 grams and a standard deviation of 50 grams. Use the empirical rule (a) About \( 68 \% \) of organs will be between what weights? (b) What percentage of organs weighs between 210 grams and 410 grams? (c) What percentage of organs weighs less than 210 grams or more than 410 grams? (d) What percentage of organs weighs between 160 grams and 410 grams? (a) \( \square \) and \( \square \) grams (Use ascending order.)

Ask by Brewer Carrillo. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) 260 grams and 360 grams (b) 95% (c) 5% (d) 99.7%

Solución

To solve this problem, we will use the empirical rule, which states that for a normal distribution: 1. About \( 68\% \) of the data falls within one standard deviation of the mean. 2. About \( 95\% \) of the data falls within two standard deviations of the mean. 3. About \( 99.7\% \) of the data falls within three standard deviations of the mean. Given: - Mean (\( \mu \)) = 310 grams - Standard Deviation (\( \sigma \)) = 50 grams ### (a) About \( 68\% \) of organs will be between what weights? Using the empirical rule: - One standard deviation from the mean is calculated as: - Lower limit: \( \mu - \sigma = 310 - 50 = 260 \) grams - Upper limit: \( \mu + \sigma = 310 + 50 = 360 \) grams Thus, about \( 68\% \) of organs will weigh between **260 grams** and **360 grams**. ### (b) What percentage of organs weighs between 210 grams and 410 grams? To find this, we need to determine how many standard deviations away from the mean these weights are: - For 210 grams: \[ z = \frac{210 - 310}{50} = \frac{-100}{50} = -2 \] - For 410 grams: \[ z = \frac{410 - 310}{50} = \frac{100}{50} = 2 \] According to the empirical rule, about \( 95\% \) of the data falls within two standard deviations of the mean. Therefore, the percentage of organs that weigh between 210 grams and 410 grams is approximately **95%**. ### (c) What percentage of organs weighs less than 210 grams or more than 410 grams? Since \( 95\% \) of the organs weigh between 210 grams and 410 grams, the remaining percentage will be in the tails: \[ 100\% - 95\% = 5\% \] This \( 5\% \) is split between the two tails (less than 210 grams and more than 410 grams), so: \[ \text{Percentage in each tail} = \frac{5\%}{2} = 2.5\% \] Thus, the percentage of organs that weigh less than 210 grams or more than 410 grams is **5%**. ### (d) What percentage of organs weighs between 160 grams and 410 grams? First, we calculate how many standard deviations 160 grams is from the mean: - For 160 grams: \[ z = \frac{160 - 310}{50} = \frac{-150}{50} = -3 \] According to the empirical rule, about \( 99.7\% \) of the data falls within three standard deviations of the mean. Therefore, the percentage of organs that weigh between 160 grams and 410 grams is approximately **99.7%**. ### Summary of Answers: (a) \( 260 \) and \( 360 \) grams (b) \( 95\% \) (c) \( 5\% \) (d) \( 99.7\% \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

For part (a), according to the empirical rule, about \( 68\% \) of data falls within one standard deviation of the mean. Thus, we calculate: - Lower limit: \( 310 - 50 = 260 \) grams - Upper limit: \( 310 + 50 = 360 \) grams So, about \( 68\% \) of organs will weigh between **260 grams and 360 grams**. For part (b), \( 210 \) grams is \( 2 \) standard deviations below the mean (since \( 310 - 2 \times 50 = 210 \)) and \( 410 \) grams is \( 2 \) standard deviations above (since \( 310 + 2 \times 50 = 410 \)). According to the empirical rule, \( 95\% \) of data falls within two standard deviations. Therefore, the percentage of organs weighing between \( 210 \) grams and \( 410 \) grams is **95%**. For part (c), since we know \( 95\% \) of organs lie between \( 210 \) grams and \( 410 \) grams, it follows that the remaining percentage is \( 100\% - 95\% = 5\% \). Hence, the percentage of organs weighing less than \( 210 \) grams or more than \( 410 \) grams is **5%**. For part (d), to find the percentage of organs that weigh between \( 160 \) grams and \( 410 \) grams, we note that \( 160 \) grams is \( 3 \) standard deviations below the mean (since \( 310 - 3 \times 50 = 160 \)). According to the empirical rule, about \( 99.7\% \) of data falls within three standard deviations of the mean. Therefore, the percentage of organs weighing between \( 160 \) grams and \( 410 \) grams is approximately **99.7%**. So, summarizing: (a) **260 grams and 360 grams**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad