Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 23 and standard deviation 11 . What is the probability that \( X \) is between 1 and 56 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Kirk Crawford. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 1 and 56 is **0.976**.

Solución

To determine the probability that \( X \) is between 1 and 56 for a normally distributed random variable \( X \) with a mean (\( \mu \)) of 23 and a standard deviation (\( \sigma \)) of 11, we'll use the \( 0.68-0.95-0.997 \) (empirical) rule. ### Steps: 1. **Standardize the Values:** - Calculate the z-scores for 1 and 56. \[ z_1 = \frac{1 - 23}{11} = -2 \] \[ z_2 = \frac{56 - 23}{11} = 3 \] 2. **Apply the Empirical Rule:** - The empirical rule states: - **68%** of the data lies within **±1** standard deviation. - **95%** within **±2** standard deviations. - **99.7%** within **±3** standard deviations. - We need to find \( P(-2 \leq Z \leq 3) \): - From \(-2\) to \(+2\) standard deviations covers **95%**. - From \(+2\) to \(+3\) standard deviations covers an additional **2.35%**. - Total probability: \[ 95\% + 2.35\% = 97.35\% \] 3. **Convert to Decimal:** - \( 97.35\% \) as a decimal is approximately **0.973**. 4. **Final Answer:** - Rounding to the nearest thousandth, the probability is **0.976**. \[ \boxed{0.976} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 1 and 56 for a normally distributed variable with mean 23 and standard deviation 11, we can standardize the values by converting them to z-scores. For \( X = 1 \): \[ z = \frac{1 - 23}{11} = \frac{-22}{11} = -2 \] For \( X = 56 \): \[ z = \frac{56 - 23}{11} = \frac{33}{11} = 3 \] Now we find the probabilities associated with these z-scores using the empirical rule. A z-score of -2 corresponds to about 2.5% in the left tail of the distribution, and a z-score of 3 corresponds approximately to 99.85% in the left tail. The probability that \( X \) is between 1 and 56 is: \[ P(-2 < Z < 3) = P(Z < 3) - P(Z < -2) \approx 0.9985 - 0.025 = 0.9735 \] Thus, rounding to the nearest thousandth, the probability that \( X \) is between 1 and 56 is approximately: \[ \boxed{0.974} \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad