Pregunta
upstudy study bank question image url

Glven the functions, \( f(x)=3 x-2 \) and \( g(x)=\frac{x+2}{3} \), complete parts 1 and 2 . 1. Find \( f(g(x)) \) and \( g(f(x)) \). Include your work in your final answer. 2. Use complete sentences to explain the relationship that exists between the composition of the functions, \( f(g(x)) \) and \( g(f(x)) \).

Ask by Vega Young. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(g(x)) = x \) and \( g(f(x)) = x \). This means that \( f \) and \( g \) are inverse functions, as applying one after the other returns the original input.

Solución

Certainly! Let's work through each part step by step. ### 1. Finding \( f(g(x)) \) and \( g(f(x)) \) **Given Functions:** - \( f(x) = 3x - 2 \) - \( g(x) = \frac{x + 2}{3} \) **a. Finding \( f(g(x)) \):** To find \( f(g(x)) \), we substitute \( g(x) \) into \( f(x) \). \[ f(g(x)) = f\left(\frac{x + 2}{3}\right) \] Now, replace \( x \) in \( f(x) \) with \( \frac{x + 2}{3} \): \[ f\left(\frac{x + 2}{3}\right) = 3\left(\frac{x + 2}{3}\right) - 2 \] Simplify the expression: \[ 3 \times \frac{x + 2}{3} = x + 2 \] So, \[ f(g(x)) = (x + 2) - 2 = x \] **b. Finding \( g(f(x)) \):** To find \( g(f(x)) \), we substitute \( f(x) \) into \( g(x) \). \[ g(f(x)) = g(3x - 2) \] Now, replace \( x \) in \( g(x) \) with \( 3x - 2 \): \[ g(3x - 2) = \frac{(3x - 2) + 2}{3} \] Simplify the expression: \[ (3x - 2) + 2 = 3x \] So, \[ g(f(x)) = \frac{3x}{3} = x \] **Summary:** \[ f(g(x)) = x \] \[ g(f(x)) = x \] ### 2. Explanation of the Relationship Between \( f(g(x)) \) and \( g(f(x)) \) Both compositions \( f(g(x)) \) and \( g(f(x)) \) result in the original input variable \( x \). This indicates that the functions \( f(x) \) and \( g(x) \) are **inverse functions** of each other. In other words, applying one function after the other returns the input value, effectively "undoing" each other's operations. Specifically: - When you apply \( g(x) \) first and then \( f(x) \), you get back to \( x \). - Similarly, applying \( f(x) \) first and then \( g(x) \) also brings you back to \( x \). This mutual inversion confirms that \( f \) and \( g \) are inverses, meaning they reverse each other's effects when composed.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find \( f(g(x)) \) and \( g(f(x)) \): 1. - First, we calculate \( f(g(x)) \): \[ g(x) = \frac{x+2}{3} \] Now, substituting \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\frac{x+2}{3}\right) = 3\left(\frac{x+2}{3}\right) - 2 = x + 2 - 2 = x \] - Next, we calculate \( g(f(x)) \): \[ f(x) = 3x - 2 \] Now, substituting \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(3x - 2) = \frac{(3x - 2) + 2}{3} = \frac{3x}{3} = x \] Thus, we have: \[ f(g(x)) = x \quad \text{and} \quad g(f(x)) = x \] 2. The relationship between the compositions \( f(g(x)) \) and \( g(f(x)) \) is that they both simplify to \( x \). This means that each function is the inverse of the other. When you apply \( g(x) \) after \( f(x) \) (or vice versa), you return to the original input \( x \). This demonstrates a symmetric relationship between the two functions, confirming that they effectively "undo" each other's actions, highlighting their status as inverse functions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad