Solve for \( x \) \( x+\frac{6}{x+10}=\frac{5 x}{x+10} \) \( x= \) One or more solutions: No solution
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the equation \( x + \frac{6}{x+10} = \frac{5x}{x+10} \), first eliminate the fraction by multiplying both sides by \( x + 10 \) (noting that \( x \neq -10 \)): \[ (x + 10)\left(x + \frac{6}{x + 10}\right) = (x + 10)\left(\frac{5x}{x + 10}\right) \] This simplifies to: \[ x(x + 10) + 6 = 5x \] \[ x^2 + 10x + 6 = 5x \] Rearranging gives: \[ x^2 + 5x + 6 = 0 \] Now we can factor this quadratic: \[ (x + 2)(x + 3) = 0 \] Setting each factor to zero, we find the solutions: \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] \[ x + 3 = 0 \quad \Rightarrow \quad x = -3 \] Thus, the solutions are \( x = -2 \) and \( x = -3 \). To assure these solutions are valid, check if they cause division by zero in the original equation: neither \( -2 \) nor \( -3 \) equals \( -10 \), so both solutions are valid. In summary, \( x = -2 \) and \( x = -3 \).