Pregunta
upstudy study bank question image url

\begin{tabular}{r}\( 6 x^{2}-5 x+3 \) \\ \( -\quad\left(3 x^{2}+8 x-4\right) \) \\ \hline A \( 3 x^{2}+13 x-1 \) \\ B. \( 3 x^{2}-3 x+7 \) \\ C. \( 3 x^{2}+3 x-1 \) \\ D. \( 3 x^{2}-13 x+7 \)\end{tabular}

Ask by Bright Mullins. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The answer is \(3x^{2} - 13x + 7\), choice D.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To solve the expression \( 6x^2 - 5x + 3 - (3x^2 + 8x - 4) \), we start by distributing the negative sign across the second polynomial. This gives us: \[ 6x^2 - 5x + 3 - 3x^2 - 8x + 4 \] Next, we combine like terms: - For \(x^2\) terms: \(6x^2 - 3x^2 = 3x^2\) - For \(x\) terms: \(-5x - 8x = -13x\) - For constant terms: \(3 + 4 = 7\) Putting it all together, we have: \[ 3x^2 - 13x + 7 \] So the correct option is D: \(3x^2 - 13x + 7\). The journey of combining polynomials is like a dance! You remove the negative sign like lifting a curtain to reveal the hidden beauty of your equation, then seamlessly pair the partners (like terms) for a grand finish. Just remember, every term needs to find its match to create harmony in your final expression! When tackling similar problems in the future, double-checking your signs works wonders! Forgetting a negative can lead you down a confusing path, much like misreading a treasure map. Always take a moment to simplify step by step, so you don’t end up lost in your calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad