Pregunta
upstudy study bank question image url

What are the zeros of the polynomial function? \( f(x)=x^{3}-x^{2}-4 x+4 \) Select each correct answer. -3 -2 -1 0 -1 2

Ask by Moreno Campos. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros of the polynomial function are -2, 1, and 2.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(x^{3}-x^{2}-4x+4=0\) - step1: Factor the expression: \(\left(x-2\right)\left(x-1\right)\left(x+2\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-2=0\\&x-1=0\\&x+2=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=2\\&x=1\\&x=-2\end{align}\) - step4: Rewrite: \(x_{1}=-2,x_{2}=1,x_{3}=2\) To find the zeros of the polynomial function \( f(x) = x^{3} - x^{2} - 4x + 4 \), we need to solve the equation \( f(x) = 0 \). The solutions to the equation are: - \( x_{1} = -2 \) - \( x_{2} = 1 \) - \( x_{3} = 2 \) From the provided options, the correct zeros of the polynomial function are: - **-2** - **1** - **2** The other options (-3, -1, 0) are not zeros of the polynomial.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the zeros of the polynomial function \( f(x) = x^{3} - x^{2} - 4x + 4 \), we can start by using the Rational Root Theorem and synthetic division to test possible rational roots. By checking various values, we discover that \( x = 2 \) is indeed a root. After factoring out \( (x - 2) \), we can further explore the remaining quadratic equation to find additional roots. Once we factor the polynomial completely, the zeros we find are \( x = 2 \) and potentially another set of values from the quadratic factor. Therefore, among the options given, \( 2 \) is a correct zero, while the others (-3, -2, -1, and 0) do not satisfy the equation. In practice, finding the zeros of polynomials is crucial, as they can represent critical points in graphs, where the function intersects the x-axis. Understanding these intersections helps in sketching functions and determining their behavior, making this concept a key part of algebra and calculus.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad