Responder
(1) \( 5x^{2} - 2x \)
(2) \( -x^{2} - 4x \)
(3) \( x^{2} + 8x \)
(4) \( 8x^{2} - 9x \)
(5) \( 4x^{2} + 5xy \)
(6) \( 3x^{2} - 4xy \)
(7) \( 2x^{2} - 3y^{2} \)
Solución
Simplify the expression by following steps:
- step0: Add the terms:
\(3x\left(x-4\right)+2x\left(x+5\right)\)
- step1: Expand the expression:
\(3x^{2}-12x+2x\left(x+5\right)\)
- step2: Expand the expression:
\(3x^{2}-12x+2x^{2}+10x\)
- step3: Add the terms:
\(5x^{2}-2x\)
Expand the expression \( x (x - y) + 3 x (x + 2 y) \)
Simplify the expression by following steps:
- step0: Add the terms:
\(x\left(x-y\right)+3x\left(x+2y\right)\)
- step1: Expand the expression:
\(x^{2}-xy+3x\left(x+2y\right)\)
- step2: Expand the expression:
\(x^{2}-xy+3x^{2}+6xy\)
- step3: Add the terms:
\(4x^{2}+5xy\)
Expand the expression \( 2 x (x + 3 y) - 3 y (2 x + y) \)
Simplify the expression by following steps:
- step0: Subtract the terms:
\(2x\left(x+3y\right)-3y\left(2x+y\right)\)
- step1: Expand the expression:
\(2x^{2}+6xy-3y\left(2x+y\right)\)
- step2: Expand the expression:
\(2x^{2}+6xy-6yx-3y^{2}\)
- step3: Subtract the terms:
\(2x^{2}+0-3y^{2}\)
- step4: Remove 0:
\(2x^{2}-3y^{2}\)
Expand the expression \( 2 x (x - 3) + 3 x (2 x - 1) \)
Simplify the expression by following steps:
- step0: Add the terms:
\(2x\left(x-3\right)+3x\left(2x-1\right)\)
- step1: Expand the expression:
\(2x^{2}-6x+3x\left(2x-1\right)\)
- step2: Expand the expression:
\(2x^{2}-6x+6x^{2}-3x\)
- step3: Add the terms:
\(8x^{2}-9x\)
Expand the expression \( 2 x (x + 1) - 3 x (x + 2) \)
Simplify the expression by following steps:
- step0: Subtract the terms:
\(2x\left(x+1\right)-3x\left(x+2\right)\)
- step1: Expand the expression:
\(2x^{2}+2x-3x\left(x+2\right)\)
- step2: Expand the expression:
\(2x^{2}+2x-3x^{2}-6x\)
- step3: Subtract the terms:
\(-x^{2}-4x\)
Expand the expression \( 2 x (x + 3) - x (x - 2) \)
Simplify the expression by following steps:
- step0: Subtract the terms:
\(2x\left(x+3\right)-x\left(x-2\right)\)
- step1: Expand the expression:
\(2x^{2}+6x-x\left(x-2\right)\)
- step2: Expand the expression:
\(2x^{2}+6x-x^{2}+2x\)
- step3: Subtract the terms:
\(x^{2}+8x\)
Expand the expression \( x (x - 2 y) + 2 x (x - y) \)
Simplify the expression by following steps:
- step0: Add the terms:
\(x\left(x-2y\right)+2x\left(x-y\right)\)
- step1: Expand the expression:
\(x^{2}-2xy+2x\left(x-y\right)\)
- step2: Expand the expression:
\(x^{2}-2xy+2x^{2}-2xy\)
- step3: Add the terms:
\(3x^{2}-4xy\)
Aqui estão as expressões expandidas para cada um dos problemas:
(1) \( 3 x(x-4) + 2 x(x+5) = 5x^{2} - 2x \)
(2) \( 2 x(x+1) - 3 x(x+2) = -x^{2} - 4x \)
(3) \( 2 x(x+3) - x(x-2) = x^{2} + 8x \)
(4) \( 2 x(x-3) + 3 x(2 x-1) = 8x^{2} - 9x \)
(5) \( x(x-y) + 3 x(x+2y) = 4x^{2} + 5xy \)
(6) \( x(x-2y) + 2 x(x-y) = 3x^{2} - 4xy \)
(7) \( 2 x(x+3y) - 3 y(2x+y) = 2x^{2} - 3y^{2} \)
Se precisar de mais alguma coisa, é só avisar!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución