Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 19 and standard deviation 5 . What is the probability that \( X \) is between 4 and 29 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Frank Gibson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 4 and 29 is **0.974**.

Solución

To determine the probability that the normally distributed random variable \( X \) with mean \( \mu = 19 \) and standard deviation \( \sigma = 5 \) falls between 4 and 29, we'll use the **68-95-99.7 rule** (also known as the empirical rule). ### Step-by-Step Calculation: 1. **Identify the Z-scores:** - For \( X = 4 \): \[ Z = \frac{4 - 19}{5} = \frac{-15}{5} = -3 \] - For \( X = 29 \): \[ Z = \frac{29 - 19}{5} = \frac{10}{5} = 2 \] 2. **Interpret the Z-scores using the empirical rule:** - **Within 1 standard deviation (\( \sigma \)):** \( \mu \pm 1\sigma \) covers **68%** of the data. - **Within 2 standard deviations (\( 2\sigma \)):** \( \mu \pm 2\sigma \) covers **95%** of the data. - **Within 3 standard deviations (\( 3\sigma \)):** \( \mu \pm 3\sigma \) covers **99.7%** of the data. 3. **Calculate the Probability between \( Z = -3 \) and \( Z = 2 \):** - **From \( Z = -3 \) to \( Z = 3 \):** Covers **99.7%**. - **From \( Z = -3 \) to \( Z = 2 \):** This interval is slightly less than \( Z = -3 \) to \( Z = 3 \) because it stops at \( Z = 2 \). - The area from \( Z = 2 \) to \( Z = 3 \) is approximately **2.35%** (half of the remaining 0.3% not covered within \( \pm 2\sigma \)). - Therefore, the probability between \( Z = -3 \) and \( Z = 2 \) is: \[ 99.7\% - 2.35\% \approx 97.35\% \] 4. **Express as a Decimal:** \[ 97.35\% \approx 0.9735 \] Rounding to the nearest thousandth gives **0.974**. ### Final Answer: The probability that \( X \) is between 4 and 29 is **0.974**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that \( X \) is between 4 and 29, we can use the properties of the normal distribution. First, we calculate how many standard deviations away from the mean the values 4 and 29 are: For \( X = 4 \): \[ Z = \frac{4 - 19}{5} = \frac{-15}{5} = -3 \] For \( X = 29 \): \[ Z = \frac{29 - 19}{5} = \frac{10}{5} = 2 \] Now we look at the standard deviations from the mean. The \( 0.68-0.95-0.997 \) rule tells us the probabilities for a normal distribution: - Approximately 68% of the data falls within 1 standard deviation (from -1 to +1). - About 95% falls within 2 standard deviations (from -2 to +2). - Around 99.7% falls within 3 standard deviations (from -3 to +3). Since -3 to +2 encompasses a range that covers from 3 standard deviations below the mean to 2 standard deviations above, we can use the percentages: - From -3 to +3 corresponds to approximately 99.7% probability. - From -3 to +2 corresponds to about 96.5% probability (since \( -3 \) to \( -2 \) covers additional 2.5% on each side). Thus, the probability that \( X \) is between 4 and 29 is approximately 0.965 (or 96.5%). So, rounding to the nearest thousandth, the answer is: \[ \text{P(4 < X < 29)} \approx 0.965 \]

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad