Pregunta
upstudy study bank question image url

2. \( \left\{\begin{array}{c}3 x+5 y=31 \\ x=4 y-1\end{array}\right. \)

Ask by Bates Burton. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 7 \) and \( y = 2 \).

Solución

To solve the system of equations: \[ \begin{cases} 3x + 5y = 31 \\ x = 4y - 1 \end{cases} \] we can use the **substitution method** since the second equation already expresses \( x \) in terms of \( y \). ### Step 1: Substitute \( x \) from the Second Equation into the First Equation Given: \[ x = 4y - 1 \] Substitute \( x \) into the first equation: \[ 3(4y - 1) + 5y = 31 \] ### Step 2: Simplify and Solve for \( y \) Expand the equation: \[ 12y - 3 + 5y = 31 \] Combine like terms: \[ 17y - 3 = 31 \] Add 3 to both sides: \[ 17y = 34 \] Divide both sides by 17: \[ y = 2 \] ### Step 3: Substitute \( y \) Back into the Second Equation to Find \( x \) Using \( y = 2 \) in: \[ x = 4y - 1 \] \[ x = 4(2) - 1 = 8 - 1 = 7 \] ### Solution \[ \boxed{ \begin{aligned} x &= 7 \\ y &= 2 \end{aligned} } \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this set of equations, start with the second equation \( x = 4y - 1 \). Substitute this expression for \( x \) into the first equation: \[ 3(4y - 1) + 5y = 31. \] This simplifies to \( 12y - 3 + 5y = 31 \), or \( 17y - 3 = 31 \). Now, add 3 to both sides: \( 17y = 34 \). Dividing both sides by 17 gives \( y = 2 \). Next, substitute \( y \) back into the equation \( x = 4y - 1 \): \[ x = 4(2) - 1 = 8 - 1 = 7. \] So the solution to the system is \( x = 7 \), \( y = 2 \). These equations can represent various scenarios, such as determining the quantities of two products given their constraints (e.g., budget or availability). For example, if \( x \) represents the number of bicycles and \( y \) represents the number of helmets produced within a specific budget, solving these equations can help manufacturers optimize their production to meet demands. A common mistake when solving systems of equations is forgetting to distribute terms properly. In this case, while substituting \( x \) values into the first equation, ensure that you're accurately applying the distributive property's multiplication across every term—missteps here can lead to incorrect solutions, so double-check your calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad