Pregunta
upstudy study bank question image url

A drill can dig through rock at a rate of \( 2 \frac{1}{2} \) inches per hour. How many hours will it take for the drill to reach five feet below the rocky surface, assuming it maintains this rate of dizging? The solution is

Ask by Brooks Wells. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take 24 hours for the drill to reach five feet below the rocky surface.

Solución

To determine how many hours it will take for the drill to reach five feet below the rocky surface at a drilling rate of \( 2 \frac{1}{2} \) inches per hour, follow these steps: ### Step 1: Convert Feet to Inches First, convert the depth from feet to inches since the drilling rate is given in inches per hour. \[ 1 \text{ foot} = 12 \text{ inches} \] \[ 5 \text{ feet} = 5 \times 12 = 60 \text{ inches} \] ### Step 2: Determine the Drilling Rate The drilling rate is \( 2 \frac{1}{2} \) inches per hour. Convert this mixed number to an improper fraction for easier calculation. \[ 2 \frac{1}{2} = \frac{5}{2} \text{ inches per hour} \] ### Step 3: Calculate the Time Required To find the time (\( t \)) required to drill 60 inches at a rate of \( \frac{5}{2} \) inches per hour, use the formula: \[ t = \frac{\text{Total Depth}}{\text{Drilling Rate}} = \frac{60}{\frac{5}{2}} = 60 \times \frac{2}{5} = 24 \text{ hours} \] ### **Answer** It will take **24 hours** for the drill to reach five feet below the rocky surface.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how long it will take the drill to reach five feet below the surface, first convert five feet to inches, knowing that there are 12 inches in a foot. So, \( 5 \text{ feet} = 5 \times 12 = 60 \text{ inches} \). Next, convert the drilling rate to an improper fraction. The rate \( 2 \frac{1}{2} \) inches per hour can be expressed as \( \frac{5}{2} \) inches per hour. Now, to find the total hours needed, divide the total distance by the rate: \[ \text{Time} = \frac{\text{Total Distance}}{\text{Rate}} = \frac{60}{\frac{5}{2}} = 60 \times \frac{2}{5} = 24 \text{ hours} \] So, it will take the drill 24 hours to reach five feet below the rocky surface. Drilling through rock has been a crucial part of human advancement. Think ancient civilizations using simple picks and hammers, and now we have powerful drills that can reach great depths. It's a symbol of how far technology has come—transforming hard labor into efficient processes. From mining to construction, the need for precision drilling is everywhere. Whether it's creating tunnels for trains or excavating for new skyscrapers, understanding drilling metrics can aid project management and ensure safety. So, knowing the rate at which materials can be drilled is essential for effective planning and execution in engineering and construction!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad