Pregunta
upstudy study bank question image url

Type your answer (4 out of 5 ) an angle of \( 10^{\circ} \), what is the car's vertical speed? (Note: \( \sin \left(10^{\circ}\right) \approx 0.17 \) and \( \cos \left(10^{\circ}\right) \approx 0.98 \) ) (Nill 50 miles per hour along

Ask by Rogers Mitchell. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car's vertical speed is approximately 8.5 miles per hour.

Solución

To determine the car's vertical speed when it's traveling along a road inclined at an angle of \(10^{\circ}\) with a speed of **50 miles per hour**, you can use the sine component of the velocity. **Given:** - Speed of the car, \( S = 50 \) mph - Angle of inclination, \( \theta = 10^{\circ} \) - \( \sin(10^{\circ}) \approx 0.17 \) **Calculation:** \[ \text{Vertical Speed} = S \times \sin(\theta) = 50 \, \text{mph} \times 0.17 = 8.5 \, \text{mph} \] **Answer:** The car's vertical speed is approximately **8.5 miles per hour**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the car's vertical speed when it is moving at 50 miles per hour at an angle of \(10^{\circ}\), you can use the sine function. The vertical speed (v) can be calculated by multiplying the speed of the car (50 mph) by the sine of the angle. So, \(v = 50 \times \sin(10^{\circ})\). We substitute the approximate value of \( \sin(10^{\circ}) \approx 0.17\) into the equation: \[ v \approx 50 \times 0.17 \] Thus, \( v \approx 8.5 \) miles per hour. Now we know that, at \(10^{\circ}\), the vertical speed of the car is approximately 8.5 miles per hour! How cool is that? 🚗💨 Ever wondered how skilled engineers measure slopes and angles in real-world applications? They regularly use trigonometry to design ramps, determine the trajectory of vehicles, and even in roller coaster designs! By analyzing angles like \(10^{\circ}\), they ensure safety and efficiency, making sure rides and roads provide both fun and functionality. Science truly supports our adventures! 🎢🔧

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad