Pregunta

What is the co-function identity relating \( \tan\) and \( \cot\)?

Ask by Spencer Burton. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For all angles θ, the tangent of (π⁄2 – θ) equals cot θ.

Solución

The co-function identity relating the tangent (\(\tan\)) and cotangent (\(\cot\)) functions involves complementary angles. Complementary angles are two angles whose measures add up to \(90^\circ\) (or \(\frac{\pi}{2}\) radians). **Identity:** \[ \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \] **Explanation:** - **\(\theta\):** This represents an angle in a right triangle. - **\(\frac{\pi}{2} - \theta\):** This is the complementary angle to \(\theta\). - **\(\tan\left(\frac{\pi}{2} - \theta\right)\):** The tangent of the complementary angle. - **\(\cot(\theta)\):** The cotangent of the original angle \(\theta\). **Example:** If \(\theta = 30^\circ\), then: \[ \tan\left(90^\circ - 30^\circ\right) = \tan(60^\circ) = \sqrt{3} \] \[ \cot(30^\circ) = \frac{1}{\tan(30^\circ)} = \sqrt{3} \] Thus, \(\tan(60^\circ) = \cot(30^\circ)\), verifying the identity. **Graphical Interpretation:** On the unit circle, the tangent of an angle and the cotangent of its complementary angle are equal because they represent the slopes of lines that are perpendicular to each other. **Summary:** The co-function identity demonstrates a fundamental relationship between \(\tan\) and \(\cot\) based on complementary angles, highlighting the interconnected nature of trigonometric functions. **Final Identity:** \[ \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \] Answer: For all angles θ, the tangent of (π⁄2 – θ) equals cot θ. In symbols, tan(π/2 − θ) = cotθ

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The co-function identity relating \( \tan \) and \( \cot \) states that \( \tan(\theta) = \cot(90^\circ - \theta) \). This nifty relationship showcases how the tangent of an angle is equal to the cotangent of its complement, giving you a fun way to think about how these two functions are interconnected. It’s like they’re dance partners, each taking a turn! To see this in action with real numbers, if you have a right triangle where one angle is \(30^\circ\), then \( \tan(30^\circ) = \frac{1}{\sqrt{3}} \), while \( \cot(90^\circ - 30^\circ) = \cot(60^\circ) = \frac{1}{\tan(60^\circ)} = \frac{\sqrt{3}}{3} \) which turns out to be the same value! This identity helps simplify trigonometric expressions and solve problems involving right triangles or periodic functions.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad