Pregunta
upstudy study bank question image url

The angle relative to the horizontal from the top of a tree to a point 14 feet from its base (on flat ground) is \( 30^{\circ} \). Find the height of the tree. The height of the tree is approximately \( \square \) feet. (Round to one decimal place as needed.)

Ask by Kelly Conner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the tree is approximately 8.1 feet.

Solución

To determine the height of the tree, let's analyze the situation step by step. ### Given: - **Distance from the base of the tree to the point on the ground:** 14 feet - **Angle of depression from the top of the tree to the point:** \( 30^{\circ} \) ### Visualization: Imagine a right triangle where: - The **horizontal leg** (adjacent side) is 14 feet. - The **vertical leg** (opposite side) is the height of the tree, which we need to find. - The **angle** between the horizontal leg and the hypotenuse (line of sight) is \( 30^{\circ} \). ### Using Trigonometry: The tangent of an angle in a right triangle is the ratio of the opposite side to the adjacent side. \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \] Here, \(\theta = 30^{\circ}\), the Opposite side is the height \( h \), and the Adjacent side is 14 feet. \[ \tan(30^{\circ}) = \frac{h}{14} \] \[ h = 14 \times \tan(30^{\circ}) \] \[ \tan(30^{\circ}) = \frac{1}{\sqrt{3}} \approx 0.5774 \] \[ h \approx 14 \times 0.5774 \approx 8.082 \text{ feet} \] ### Conclusion: Rounding to one decimal place, the height of the tree is approximately **8.1 feet**. \[ \boxed{8.1} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the height of the tree, we can use trigonometry. The situation forms a right triangle where the angle at the top of the tree is \( 30^{\circ} \), the distance from the base of the tree to the point on the ground is 14 feet, and the height of the tree represents the opposite side. Using the tangent function: \[ \tan(30^{\circ}) = \frac{\text{height}}{14} \] From trigonometric tables, we know that \( \tan(30^{\circ}) = \frac{1}{\sqrt{3}} \approx 0.577 \). We can rearrange the equation to find the height: \[ \text{height} = 14 \times \tan(30^{\circ}) \approx 14 \times 0.577 \approx 8.1 \text{ feet} \] So, the height of the tree is approximately \( 8.1 \) feet.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad