Pregunta
upstudy study bank question image url

Simplify \( \frac{n!}{r!(n-r)!}+\frac{2(n+1)!}{r!(n-r+1)!} \)

Ask by Bond Hobbs. in Nigeria
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{n!(3n - r + 3)}{r!(n - r + 1)!} \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\frac{n!}{r!\times \left(n-r\right)!}\) Calculate or simplify the expression \( \frac{2(n+1)!}{r!(n-r+1)!} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2\left(n+1\right)!}{r!\times \left(n-r+1\right)!}\) Calculate or simplify the expression \( \frac{2(n+1)!}{r!(n-r+1)!} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2\left(n+1\right)!}{r!\times \left(n-r+1\right)!}\) Calculate or simplify the expression \( \frac{2(n+1)\cdot n!}{r!(n-r+1)!} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2\left(n+1\right)\times n!}{r!\times \left(n-r+1\right)!}\) - step1: Multiply the terms: \(\frac{2\left(n+1\right)!}{r!\times \left(n-r+1\right)!}\) To simplify the expression \[ \frac{n!}{r!(n-r)!} + \frac{2(n+1)!}{r!(n-r+1)!} \] we can break it down into two parts. 1. The first term is \[ \frac{n!}{r!(n-r)!} \] This is already in its simplest form, representing the binomial coefficient \( \binom{n}{r} \). 2. The second term is \[ \frac{2(n+1)!}{r!(n-r+1)!} \] We can rewrite \( (n+1)! \) as \( (n+1) \cdot n! \), so we have: \[ \frac{2(n+1) \cdot n!}{r!(n-r+1)!} \] Now, we can combine both terms: \[ \frac{n!}{r!(n-r)!} + \frac{2(n+1) \cdot n!}{r!(n-r+1)!} \] To combine these fractions, we need a common denominator. The common denominator will be \( r!(n-r+1)! \). Thus, we rewrite the first term: \[ \frac{n! \cdot (n-r+1)}{r!(n-r+1)!} \] Now we can combine the two fractions: \[ \frac{n!(n-r+1) + 2(n+1)n!}{r!(n-r+1)!} \] Factoring out \( n! \): \[ \frac{n! \left( (n-r+1) + 2(n+1) \right)}{r!(n-r+1)!} \] Now simplifying the expression inside the parentheses: \[ (n-r+1) + 2(n+1) = n - r + 1 + 2n + 2 = 3n - r + 3 \] Thus, the final simplified expression is: \[ \frac{n!(3n - r + 3)}{r!(n-r+1)!} \] This is the simplified form of the original expression.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify the expression \[ \frac{n!}{r!(n-r)!} + \frac{2(n+1)!}{r!(n-r+1)!}, \] let's start by breaking it down. 1. The first term is \[ \frac{n!}{r!(n-r)!}. \] This term represents the binomial coefficient \( \binom{n}{r} \). 2. The second term can be simplified. We have \[ \frac{2(n+1)!}{r!(n-r+1)!} = \frac{2(n+1)(n!)}{r!(n-r+1)!}. \] Noting that \((n+1)! = (n+1) \cdot n!\), we can rewrite \( (n-r+1)! \) in terms to relate it to \( (n-r)! \): \[ (n-r+1)! = (n-r+1)(n-r)!. \] Thus, we can write the second term as: \[ \frac{2(n+1)n!}{r!(n-r+1)(n-r)!}. \] Now, we can write both fractions with a common denominator, which is \( r!(n-r)! \): The equivalent expression for the second term after introducing the common denominator becomes: \[ \frac{2(n+1) n!}{r!(n-r+1)(n-r)!}. \] Let’s now handle the second term. We know \[ \frac{(n-r+1)!}{(n-r)!} = \frac{1}{(n-r)!}(n-r+1) \rightarrow (n-r+1) \text{ contributes one extra factor.} \] We can, therefore, factor the expression: Now, rewriting both terms with a common denominator gives us: \[ \frac{n!}{r!(n-r)!} + \frac{2(n+1)n!}{r!(n-r+1)(n-r)!} = \frac{n! \left( (n-r+1) + 2(n+1) \right)}{r!(n-r)!}. \] Combining the terms gives: \[ \frac{n!}{r!(n-r)!} + \frac{2(n+1)n!}{r!(n-r+1)(n-r)!} = \frac{n!}{r!(n-r)!} + \frac{2(n+1)n!}{r!(n-r)(n-r)!}. \] Now, evaluating the expression: \[ (n-r+1) + 2(n+1) = n - r + 1 + 2n + 2 = 3n - r + 3. \] Thus, the simplified expression becomes: \[ \frac{n! (3n - r + 3)}{r!(n-r)!}. \] Identifying this with a binomial coefficient, we get \[ = \frac{(n+3)n!}{r!(n-r)!}. \] So, we finally obtain \[ \boxed{\frac{(n+3)!}{r!(n-r)!}}. \] This final result expresses the original summation in a compact and factorial form, capturing the idea of adding two combinatorial contributions together.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad