Pregunta
upstudy study bank question image url

Determine whether Rolle's Theorem applies to the given functio \( f f(x)=-\cos 7 x ;\left[\frac{\pi}{14}, \frac{3 \pi}{14}\right] \)

Ask by Sanders Wagner. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rolle's Theorem applies to the function \( f(x) = -\cos(7x) \) on the interval \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\) because the function is continuous and differentiable on this interval, and it has equal values at both endpoints.

Solución

Yes, **Rolle's Theorem** applies to the function \( f(x) = -\cos(7x) \) on the interval \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\). Here's why: ### **Rolle's Theorem Requirements:** 1. **Continuity:** The function \( f(x) = -\cos(7x) \) is continuous on \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\) because the cosine function is continuous everywhere. 2. **Differentiability:** The function is differentiable on the open interval \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\) since the cosine function is differentiable everywhere. 3. **Equal Endpoint Values:** - Evaluate at \( x = \frac{\pi}{14} \): \[ f\left(\frac{\pi}{14}\right) = -\cos\left(7 \cdot \frac{\pi}{14}\right) = -\cos\left(\frac{\pi}{2}\right) = -0 = 0 \] - Evaluate at \( x = \frac{3\pi}{14} \): \[ f\left(\frac{3\pi}{14}\right) = -\cos\left(7 \cdot \frac{3\pi}{14}\right) = -\cos\left(\frac{3\pi}{2}\right) = -0 = 0 \] Since \( f\left(\frac{\pi}{14}\right) = f\left(\frac{3\pi}{14}\right) = 0 \), the third condition is satisfied. ### **Conclusion:** All the conditions of Rolle's Theorem are met: - **Continuity** on \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\) - **Differentiability** on \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\) - **Equal endpoint values** at \( x = \frac{\pi}{14} \) and \( x = \frac{3\pi}{14} \) Therefore, there exists at least one \( c \) in \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\) such that \( f'(c) = 0 \). **For completeness**, finding such \( c \): \[ f'(x) = 7\sin(7x) \] Setting \( f'(c) = 0 \): \[ 7\sin(7c) = 0 \implies \sin(7c) = 0 \implies 7c = k\pi \quad \text{for some integer } k \] Within the interval \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\), the solution is: \[ c = \frac{\pi}{7} \] which lies within \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\). **Final Answer:** Yes. The function is continuous and differentiable on the interval and has equal values at both endpoints, so Rolle’s Theorem applies.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To verify if Rolle's Theorem applies, we need to check three conditions: the function must be continuous on the closed interval \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\), differentiable on the open interval \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\), and the values of the function must be equal at the endpoints of the interval. The function \(f(x) = -\cos(7x)\) is continuous and differentiable everywhere, including the given interval. Now, let's evaluate the endpoints: - At \(x = \frac{\pi}{14}\), \(f\left(\frac{\pi}{14}\right) = -\cos\left(\frac{7\pi}{14}\right) = -\cos\left(\frac{\pi}{2}\right) = 0\). - At \(x = \frac{3\pi}{14}\), \(f\left(\frac{3\pi}{14}\right) = -\cos\left(\frac{21\pi}{14}\right) = -\cos\left(\frac{3\pi}{2}\right) = 0\). Since \(f\left(\frac{\pi}{14}\right) = f\left(\frac{3\pi}{14}\right)\),all the conditions for Rolle's Theorem are satisfied. Hence, Rolle's Theorem applies!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad