Determine whether Rolle's Theorem applies to the given functio \( f f(x)=-\cos 7 x ;\left[\frac{\pi}{14}, \frac{3 \pi}{14}\right] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To verify if Rolle's Theorem applies, we need to check three conditions: the function must be continuous on the closed interval \(\left[\frac{\pi}{14}, \frac{3\pi}{14}\right]\), differentiable on the open interval \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\), and the values of the function must be equal at the endpoints of the interval. The function \(f(x) = -\cos(7x)\) is continuous and differentiable everywhere, including the given interval. Now, let's evaluate the endpoints: - At \(x = \frac{\pi}{14}\), \(f\left(\frac{\pi}{14}\right) = -\cos\left(\frac{7\pi}{14}\right) = -\cos\left(\frac{\pi}{2}\right) = 0\). - At \(x = \frac{3\pi}{14}\), \(f\left(\frac{3\pi}{14}\right) = -\cos\left(\frac{21\pi}{14}\right) = -\cos\left(\frac{3\pi}{2}\right) = 0\). Since \(f\left(\frac{\pi}{14}\right) = f\left(\frac{3\pi}{14}\right)\),all the conditions for Rolle's Theorem are satisfied. Hence, Rolle's Theorem applies!