Determine the constant that should be added to the binomial so that it becomes a perfect square trinomial. \( x^{2}-\frac{4}{5} x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To make the expression \( x^{2}-\frac{4}{5} x \) a perfect square trinomial, we need to find a constant that completes the square. Take half of the coefficient of \( x \), which is \( -\frac{4}{5} \). Half of that is \( -\frac{2}{5} \). Now square this value: \[ \left(-\frac{2}{5}\right)^2 = \frac{4}{25}. \] So, we need to add \( \frac{4}{25} \) to the expression \( x^{2}-\frac{4}{5} x \). Now, let's look at the perfect square trinomial formed: \[ x^{2}-\frac{4}{5} x + \frac{4}{25} = \left(x - \frac{2}{5}\right)^2. \] Thus, the constant to be added is \( \frac{4}{25} \).