Write as a polynomial. \[ \begin{array}{l}(x+3)(x+7)= \\ (x-2)(x+3)= \\ (2 a-3)(3 a-4)=\end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To write the given expressions as polynomials, we'll use the distributive property (also known as the FOIL method for binomials). 1. For \((x+3)(x+7)\): \[ (x+3)(x+7) = x^2 + 7x + 3x + 21 = x^2 + 10x + 21 \] 2. For \((x-2)(x+3)\): \[ (x-2)(x+3) = x^2 + 3x - 2x - 6 = x^2 + x - 6 \] 3. For \((2a-3)(3a-4)\): \[ (2a-3)(3a-4) = 2a \cdot 3a + 2a \cdot (-4) - 3 \cdot 3a + (-3) \cdot (-4) = 6a^2 - 8a - 9a + 12 = 6a^2 - 17a + 12 \] Putting it all together, we have: \[ \begin{array}{l} (x+3)(x+7) = x^2 + 10x + 21, \\ (x-2)(x+3) = x^2 + x - 6, \\ (2a-3)(3a-4) = 6a^2 - 17a + 12. \end{array} \]