Pregunta
upstudy study bank question image url

Establish the identity. \( \begin{array}{l}1+\frac{\tan ^{2} \theta}{\sec \theta+1}=\sec \theta \\ \text { Simplify the numerator of the fraction from the left side by applying the appropriate Pythagorean Identity. } \\ 1+\frac{\sec ^{2} \theta-1}{\sec \theta+1} \text { (Do not factor.) } \\ \text { Factor the numerator of the fraction from the previous step. } \\ 1+\frac{\square}{\sec \theta+1}\end{array} \)

Ask by Martinez Deleon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ 1 + \frac{\sec^2 \theta - 1}{\sec \theta + 1} = \sec \theta \]

Solución

To establish the identity \[ 1+\frac{\tan ^{2} \theta}{\sec \theta+1}=\sec \theta, \] we will follow the steps outlined in the problem. ### Step 1: Simplify the numerator of the fraction using the Pythagorean Identity We know from the Pythagorean identity that \[ \tan^2 \theta + 1 = \sec^2 \theta. \] Thus, we can express \(\tan^2 \theta\) as: \[ \tan^2 \theta = \sec^2 \theta - 1. \] Substituting this into the left side of the identity gives us: \[ 1 + \frac{\tan^2 \theta}{\sec \theta + 1} = 1 + \frac{\sec^2 \theta - 1}{\sec \theta + 1}. \] ### Step 2: Factor the numerator of the fraction Now we need to simplify the fraction: \[ 1 + \frac{\sec^2 \theta - 1}{\sec \theta + 1}. \] The numerator \(\sec^2 \theta - 1\) can be factored as: \[ \sec^2 \theta - 1 = (\sec \theta - 1)(\sec \theta + 1). \] Now substituting this back into the expression gives us: \[ 1 + \frac{(\sec \theta - 1)(\sec \theta + 1)}{\sec \theta + 1}. \] ### Step 3: Simplify the expression Since \(\sec \theta + 1\) is in both the numerator and the denominator, we can cancel it out (assuming \(\sec \theta + 1 \neq 0\)): \[ 1 + (\sec \theta - 1). \] This simplifies to: \[ \sec \theta. \] ### Conclusion Thus, we have shown that: \[ 1 + \frac{\tan^2 \theta}{\sec \theta + 1} = \sec \theta, \] which establishes the identity.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To establish the identity, we start with the left side: 1. **Replacing \(\tan^2 \theta\)**: We apply the Pythagorean identity \(\tan^2 \theta = \sec^2 \theta - 1\). So, we can rewrite the equation as: \[ 1 + \frac{\tan^2 \theta}{\sec \theta + 1} = 1 + \frac{\sec^2 \theta - 1}{\sec \theta + 1} \] 2. **Simplifying the fraction**: Now we simplify the fraction in our equation: \[ 1 + \frac{\sec^2 \theta - 1}{\sec \theta + 1} \] We can express this numerator as: \(\sec^2 \theta - 1 = (\sec \theta - 1)(\sec \theta + 1)\) Thus, we can rewrite it as: \[ 1 + \frac{(\sec \theta - 1)(\sec \theta + 1)}{\sec \theta + 1} \] 3. **Canceling terms**: Since \(\sec \theta + 1\) is common in the numerator and the denominator, we can cancel it (assuming \(\sec \theta + 1 \neq 0\)): \[ 1 + \sec \theta - 1 = \sec \theta \] This shows that both sides are equal, thus establishing the identity: \[ 1 + \frac{\tan^2 \theta}{\sec \theta + 1} = \sec \theta \] Feel free to ask if you'd like to dive deeper into trigonometric identities or explore some fun facts about their historical developments!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad