Pregunta
upstudy study bank question image url

3.4 A quadratic sequence, with general term \( T_{n} \), has the following properties - \( T_{11}=125 \) - \( T_{n}-T_{n-1}=3 n-4 \) Determine the first term of the sequence.

Ask by Colon Davies. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first term of the sequence is \(-30\).

Solución

To determine the first term of the quadratic sequence \( T_n \), let's analyze the given information: 1. **Recurrence Relation:** \[ T_n - T_{n-1} = 3n - 4 \] 2. **Specific Term:** \[ T_{11} = 125 \] ### Step 1: Find the General Formula for \( T_n \) The difference \( T_n - T_{n-1} = 3n - 4 \) suggests that the sequence is quadratic. We can express the general term \( T_n \) as: \[ T_n = T_1 + \sum_{k=2}^n (3k - 4) \] Let's compute the summation: \[ \sum_{k=2}^n (3k - 4) = 3\sum_{k=2}^n k - 4(n-1) \] \[ = 3\left(\frac{n(n+1)}{2} - 1\right) - 4(n-1) \] \[ = \frac{3n^2 + 3n}{2} - 3 - 4n + 4 \] \[ = \frac{3n^2 - 5n + 2}{2} \] Therefore, the general formula for \( T_n \) is: \[ T_n = T_1 + \frac{3n^2 - 5n + 2}{2} \] ### Step 2: Use the Given Term to Find \( T_1 \) Given \( T_{11} = 125 \), substitute \( n = 11 \) into the general formula: \[ 125 = T_1 + \frac{3(11)^2 - 5(11) + 2}{2} \] \[ 125 = T_1 + \frac{363 - 55 + 2}{2} \] \[ 125 = T_1 + \frac{310}{2} \] \[ 125 = T_1 + 155 \] \[ T_1 = 125 - 155 \] \[ T_1 = -30 \] ### Verification To ensure the solution is correct, let's verify a few terms: - \( T_1 = -30 \) - \( T_2 = T_1 + (3 \times 2 - 4) = -30 + 2 = -28 \) - \( T_3 = T_2 + (3 \times 3 - 4) = -28 + 5 = -23 \) - ... - \( T_{11} = -30 + 155 = 125 \) (matches the given) Thus, the first term of the sequence is: **Answer:** \(-30\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for the first term of the quadratic sequence, we start with the information given: 1. We know that \( T_{n} - T_{n-1} = 3n - 4 \). 2. This means that the difference between consecutive terms is a linear expression. From the difference equation, we can express the terms in the sequence recursively: \[ T_n = T_{n-1} + (3n - 4) \] We can then derive the specific terms of the sequence step by step. Starting from \( T_1 \): - \( T_2 = T_1 + (3 \cdot 2 - 4) = T_1 + 2 \) - \( T_3 = T_2 + (3 \cdot 3 - 4) = T_1 + 2 + 5 = T_1 + 7 \) - \( T_4 = T_3 + (3 \cdot 4 - 4) = T_1 + 7 + 8 = T_1 + 15 \) Continuing this way, we can generate a pattern. Summing up the differences from \( T_1 \) to \( T_{11} \): Let’s denote the total number of terms \( n = 11 \), we know: \[ T_{11} = T_1 + \sum_{k=2}^{11} (3k - 4) \] Calculating the sum \( \sum_{k=2}^{11} (3k - 4) \): Break it into parts: \[ \sum_{k=2}^{11} (3k - 4) = \sum_{k=2}^{11} 3k - \sum_{k=2}^{11} 4 \] - The first part, \( \sum_{k=2}^{11} 3k = 3 \sum_{k=2}^{11} k\): \[ \sum_{k=2}^{11} k = \frac{(11)(12)}{2} - 1 = 66 - 1 = 65 \quad \Rightarrow \quad 3 \cdot 65 = 195 \] - The second part \( \sum_{k=2}^{11} 4\) has 10 terms (from \( k=2 \) to \( k=11 \)), thus: \[ \sum_{k=2}^{11} 4 = 4 \cdot 10 = 40 \] So, we can combine these: \[ \sum_{k=2}^{11} (3k - 4) = 195 - 40 = 155 \] Thus, \[ T_{11} = T_1 + 155 \] Given \( T_{11} = 125 \), we equate: \[ 125 = T_1 + 155 \] Solving for \( T_1 \): \[ T_1 = 125 - 155 = -30 \] So the first term of the sequence is \( \boxed{-30} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad