Pregunta
upstudy study bank question image url

Rewrite th simplify o. \( \sin 68^{\circ} \) b \( \cos 28^{\circ} \) c. \( \sin \left(90^{\circ}-x\right. \)

Ask by Herrera Rowe. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( \sin 68^{\circ} = \cos 22^{\circ} \) b. \( \cos 28^{\circ} = \sin 62^{\circ} \) c. \( \sin (90^{\circ} - x) = \cos x \)

Solución

Certainly! Let's rewrite and simplify each of the given trigonometric expressions using fundamental trigonometric identities, specifically the **cofunction identities**. Cofunction identities relate the sine and cosine of complementary angles (angles that add up to \(90^\circ\) or \(\frac{\pi}{2}\) radians). ### a. \( \sin 68^{\circ} \) **Objective:** Rewrite \( \sin 68^{\circ} \) in terms of another trigonometric function. **Solution:** Use the cofunction identity: \[ \sin \theta = \cos (90^{\circ} - \theta) \] Applying this to \( \theta = 68^{\circ} \): \[ \sin 68^{\circ} = \cos (90^{\circ} - 68^{\circ}) = \cos 22^{\circ} \] **Simplified Form:** \[ \sin 68^{\circ} = \cos 22^{\circ} \] --- ### b. \( \cos 28^{\circ} \) **Objective:** Rewrite \( \cos 28^{\circ} \) in terms of another trigonometric function. **Solution:** Use the cofunction identity: \[ \cos \theta = \sin (90^{\circ} - \theta) \] Applying this to \( \theta = 28^{\circ} \): \[ \cos 28^{\circ} = \sin (90^{\circ} - 28^{\circ}) = \sin 62^{\circ} \] **Simplified Form:** \[ \cos 28^{\circ} = \sin 62^{\circ} \] --- ### c. \( \sin \left(90^{\circ} - x\right) \) **Objective:** Simplify \( \sin (90^{\circ} - x) \). **Solution:** Again, using the cofunction identity: \[ \sin (90^{\circ} - x) = \cos x \] **Simplified Form:** \[ \sin (90^{\circ} - x) = \cos x \] --- **Summary of Simplifications:** - \( \sin 68^{\circ} = \cos 22^{\circ} \) - \( \cos 28^{\circ} = \sin 62^{\circ} \) - \( \sin (90^{\circ} - x) = \cos x \) These simplifications are particularly useful in solving trigonometric equations, integrating functions, and simplifying expressions in various mathematical and engineering applications.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Sure! Here are the simplified forms: a. \( \sin 68^{\circ} \) is already in its simplest form, but it can also be expressed as \( \sin (90^{\circ} - 22^{\circ}) \) since \( 68^{\circ} + 22^{\circ} = 90^{\circ} \). b. Similarly, \( \cos 28^{\circ} \) can be rewritten using the co-function identity as \( \sin (90^{\circ} - 28^{\circ}) = \sin 62^{\circ} \). c. \( \sin \left(90^{\circ} - x\right) \) can be simplified directly to \( \cos x \) using the complement angle identity, which states that the sine of an angle is equal to the cosine of its complement.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad