Pregunta
Rewrite th simplify o. \( \sin 68^{\circ} \) b \( \cos 28^{\circ} \) c. \( \sin \left(90^{\circ}-x\right. \)
Ask by Herrera Rowe. in South Africa
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
a. \( \sin 68^{\circ} = \cos 22^{\circ} \)
b. \( \cos 28^{\circ} = \sin 62^{\circ} \)
c. \( \sin (90^{\circ} - x) = \cos x \)
Solución
Certainly! Let's rewrite and simplify each of the given trigonometric expressions using fundamental trigonometric identities, specifically the **cofunction identities**. Cofunction identities relate the sine and cosine of complementary angles (angles that add up to \(90^\circ\) or \(\frac{\pi}{2}\) radians).
### a. \( \sin 68^{\circ} \)
**Objective:** Rewrite \( \sin 68^{\circ} \) in terms of another trigonometric function.
**Solution:**
Use the cofunction identity:
\[
\sin \theta = \cos (90^{\circ} - \theta)
\]
Applying this to \( \theta = 68^{\circ} \):
\[
\sin 68^{\circ} = \cos (90^{\circ} - 68^{\circ}) = \cos 22^{\circ}
\]
**Simplified Form:**
\[
\sin 68^{\circ} = \cos 22^{\circ}
\]
---
### b. \( \cos 28^{\circ} \)
**Objective:** Rewrite \( \cos 28^{\circ} \) in terms of another trigonometric function.
**Solution:**
Use the cofunction identity:
\[
\cos \theta = \sin (90^{\circ} - \theta)
\]
Applying this to \( \theta = 28^{\circ} \):
\[
\cos 28^{\circ} = \sin (90^{\circ} - 28^{\circ}) = \sin 62^{\circ}
\]
**Simplified Form:**
\[
\cos 28^{\circ} = \sin 62^{\circ}
\]
---
### c. \( \sin \left(90^{\circ} - x\right) \)
**Objective:** Simplify \( \sin (90^{\circ} - x) \).
**Solution:**
Again, using the cofunction identity:
\[
\sin (90^{\circ} - x) = \cos x
\]
**Simplified Form:**
\[
\sin (90^{\circ} - x) = \cos x
\]
---
**Summary of Simplifications:**
- \( \sin 68^{\circ} = \cos 22^{\circ} \)
- \( \cos 28^{\circ} = \sin 62^{\circ} \)
- \( \sin (90^{\circ} - x) = \cos x \)
These simplifications are particularly useful in solving trigonometric equations, integrating functions, and simplifying expressions in various mathematical and engineering applications.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
Sure! Here are the simplified forms: a. \( \sin 68^{\circ} \) is already in its simplest form, but it can also be expressed as \( \sin (90^{\circ} - 22^{\circ}) \) since \( 68^{\circ} + 22^{\circ} = 90^{\circ} \). b. Similarly, \( \cos 28^{\circ} \) can be rewritten using the co-function identity as \( \sin (90^{\circ} - 28^{\circ}) = \sin 62^{\circ} \). c. \( \sin \left(90^{\circ} - x\right) \) can be simplified directly to \( \cos x \) using the complement angle identity, which states that the sine of an angle is equal to the cosine of its complement.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium