Question In \( \triangle \mathrm{EFG} \), the measure of \( \angle \mathrm{G}=90^{\circ}, \mathrm{EG}=11, \mathrm{GF}=60 \), and \( \mathrm{FE}=61 \). What ratio represents the tangent of \( \angle \mathrm{E} \) ?
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the tangent of \( \angle E \) in triangle \( \triangle EFG \), we utilize the definition of the tangent function in a right triangle, which is the ratio of the opposite side to the adjacent side. Here, \( EG \) is the opposite side to \( \angle E \), and \( GF \) is the adjacent side. Given: - \( EG = 11 \) - \( GF = 60 \) Thus, the ratio representing the tangent of \( \angle E \) can be calculated as follows: \[ \tan E = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{EG}{GF} = \frac{11}{60} \] So, the tangent of \( \angle E \) is \( \frac{11}{60} \).