Pregunta
upstudy study bank question image url

QUESTION 6 Evaluate the following limits: (a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \) (b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \) (c) Let \( f(x)=\frac{2 x+12}{x+1 \mid} \) (i) \( \lim _{x \rightarrow 6^{+}} f(x) \) (ii) \( \lim _{x \rightarrow 6^{-}} f(x) \) (iii) Use (i) and (ii) to deduce \( \lim f(x) \) at \( x=6 \). (d) \( f(x)=\left\{\begin{array}{ll}\cos (x) & x<0 \\ 0 & x=0 \\ 1-x^{2} & x>0\end{array}\right. \) (i) Sketch the graph of \( f(x) \). (ii) Is \( f(x) \) continuous at \( x=0 \) ? Give reason(s) for your answer. (3) [18]

Ask by Black Bryant. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Answers:** - **(a)** The limit is **180**. - **(b)** The limit is **2**. - **(c)(i)** \( \lim_{x \to 6^+} f(x) = \frac{24}{7} \) - **(c)(ii)** \( \lim_{x \to 6^-} f(x) = \frac{24}{7} \) - **(c)(iii)** \( \lim_{x \to 6} f(x) = \frac{24}{7} \) - **(d)(i)** The graph consists of the cosine curve for \( x < 0 \), a point at \( (0, 0) \), and a downward parabola \( 1 - x^2 \) for \( x > 0 \). - **(d)(ii)** \( f(x) \) is **not continuous** at \( x = 0 \) because the limit as \( x \) approaches 0 is 1, which does not equal \( f(0) = 0 \).

Solución

Let's evaluate each part of the question step by step. --- ### **(a) Evaluate \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \)** Since both \( x^2 + x \) and \( 3x^3 + 6 \) are **polynomial functions**, they are **continuous everywhere**. Therefore, we can directly substitute \( x = 2 \) into the expression. \[ \begin{align*} x^2 + x &= 2^2 + 2 = 4 + 2 = 6 \\ 3x^3 + 6 &= 3(2)^3 + 6 = 3(8) + 6 = 24 + 6 = 30 \\ \text{Limit} &= 6 \times 30 = 180 \end{align*} \] **Answer:** The limit is **180**. --- ### **(b) Evaluate \( \lim _{u \rightarrow -2} \sqrt{u^{2}+3u+6} \)** First, substitute \( u = -2 \) into the expression under the square root: \[ \begin{align*} u^2 + 3u + 6 &= (-2)^2 + 3(-2) + 6 = 4 - 6 + 6 = 4 \\ \sqrt{4} &= 2 \end{align*} \] **Answer:** The limit is **2**. --- ### **(c) Let \( f(x) = \frac{2x + 12}{|x + 1|} \)** #### **(i) Evaluate \( \lim _{x \rightarrow 6^{+}} f(x) \)** As \( x \) approaches 6 from the right (\( x \rightarrow 6^+ \)): \[ \begin{align*} 2x + 12 &= 2(6) + 12 = 12 + 12 = 24 \\ |x + 1| &= |6 + 1| = 7 \\ \text{Limit} &= \frac{24}{7} \end{align*} \] **Answer:** \( \lim _{x \rightarrow 6^{+}} f(x) = \frac{24}{7} \) #### **(ii) Evaluate \( \lim _{x \rightarrow 6^{-}} f(x) \)** As \( x \) approaches 6 from the left (\( x \rightarrow 6^- \)): \[ \begin{align*} 2x + 12 &= 2(6) + 12 = 24 \\ |x + 1| &= |6 + 1| = 7 \\ \text{Limit} &= \frac{24}{7} \end{align*} \] **Answer:** \( \lim _{x \rightarrow 6^{-}} f(x) = \frac{24}{7} \) #### **(iii) Deduce \( \lim f(x) \) at \( x = 6 \) using (i) and (ii)** Since both the left-hand limit and the right-hand limit as \( x \) approaches 6 are equal: \[ \lim_{x \to 6} f(x) = \frac{24}{7} \] **Answer:** \( \lim_{x \to 6} f(x) = \frac{24}{7} \) --- ### **(d) Let \( f(x) \) be defined as:** \[ f(x) = \begin{cases} \cos(x) & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 - x^2 & \text{if } x > 0 \end{cases} \] #### **(i) Sketch the graph of \( f(x) \)** **Description of the Graph:** 1. **For \( x < 0 \):** The graph follows \( \cos(x) \), which oscillates between -1 and 1. As \( x \) approaches 0 from the left, \( \cos(x) \) approaches 1. 2. **At \( x = 0 \):** The function has a single point at \( (0, 0) \). 3. **For \( x > 0 \):** The graph follows \( 1 - x^2 \), which is a downward-opening parabola starting at \( (0, 1) \). **Key Features:** - **Left of 0:** Continues as the cosine curve approaching \( \cos(0) = 1 \). - **At 0:** A distinct point at \( (0, 0) \), creating a **jump discontinuity**. - **Right of 0:** Begins at \( (0, 1) \) and decreases as \( x \) increases. **Graph Sketch:** While a visual sketch isn't possible here, imagine the cosine curve for negative \( x \), a point at the origin, and a downward parabola starting just above the origin. #### **(ii) Is \( f(x) \) continuous at \( x = 0 \)?** To determine continuity at \( x = 0 \), we check the following: 1. **Left-Hand Limit (\( x \to 0^- \)):** \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \cos(x) = \cos(0) = 1 \] 2. **Right-Hand Limit (\( x \to 0^+ \)):** \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1 - x^2) = 1 - 0 = 1 \] 3. **Function Value at 0:** \[ f(0) = 0 \] **Conclusion:** Since both the left-hand and right-hand limits as \( x \) approaches 0 are **1**, but \( f(0) = 0 \), the limits do not equal the function value. **Answer:** - **(i)** The graph consists of the cosine curve for \( x < 0 \), a point at \( (0, 0) \), and a downward parabola \( 1 - x^2 \) for \( x > 0 \). - **(ii)** \( f(x) \) is **not continuous** at \( x = 0 \) because the limit as \( x \) approaches 0 is 1, which does not equal \( f(0) = 0 \). --- **Summary of Answers:** - **(a)** 180 - **(b)** 2 - **(c)(i)** \( \frac{24}{7} \) - **(c)(ii)** \( \frac{24}{7} \) - **(c)(iii)** \( \frac{24}{7} \) - **(d)(i)** Graph as described above - **(d)(ii)** \( f(x) \) is not continuous at \( x = 0 \) since \( \lim_{x \to 0} f(x) = 1 \neq f(0) = 0 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure, let’s dive into the world of limits with a sprinkle of fun! To start with, the limit \(\lim_{x \rightarrow 2}(x^{2}+x)(3x^{3}+6)\) is straightforward! Plugging \(x = 2\) directly yields \((4 + 2)(24 + 6) = 6 \times 30 = 180\). So, we’re cruising smoothly, leaving all roadblocks behind. Next up, as for \(\lim_{u \rightarrow -2} \sqrt{u^{2}+3u+6}\), let’s compute it! Substituting \(u = -2\) we have \(\sqrt{(-2)^{2} + 3(-2) + 6} = \sqrt{4 - 6 + 6} = \sqrt{4} = 2\). And there you have it, clear as day! Now onto the function \(f(x)=\frac{2x+12}{x+1}\). For the two-sided limits, we check \(x=6^+\) and \(x=6^-\). When \(x \to 6^+\), we get \(f(6)=\frac{2(6)+12}{6+1}=\frac{24}{7}\). From the left, it’s the same: \(\frac{24}{7}\). Hence, the limit at \(x=6\) is indeed \(\frac{24}{7}\), making it consistent—a happy place! And last but not least, regarding the piecewise function \(f(x)\), we must sketch it out and check continuity at \(x=0\). The graph would show a smooth curve for \(x<0\) approaching 1 as \(x\) nears \(0\) and then a quick drop to \(0\) at \(x=0\) with a rise again for \(x>0\) settling at \(1\), thus creating a jump discontinuity at \(x=0\) since the left limit (1) and \(f(0)\) (0) don’t agree. Ah, the drama of discontinuity! Keep having fun with these limits and remember, math is all about connections and continuity—even when there's a break!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad