Pregunta
upstudy study bank question image url

Functions \( 1 \leftarrow \quad \) State the domain and range for the following relation. Then determine whether the relation represents a function. \( \{(5,4),(-2,4),(7,5),(5,13)\} \) Part 1 of 3

Ask by Coles Joseph. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Domain**: \(\{ -2,\ 5,\ 7 \}\) - **Range**: \(\{ 4,\ 5,\ 13 \}\) - **Function**: No, because the input \(5\) has two different outputs.

Solución

Sure! Let's break down the problem step by step. ### Given Relation: \[ \{(5, 4),\ (-2, 4),\ (7, 5),\ (5, 13)\} \] ### 1. **Domain** The **domain** of a relation consists of all the **first elements** (inputs) in each ordered pair. - **First elements**: \(5, -2, 7, 5\) Since sets do not include duplicate elements, we list each unique input once. - **Domain**: \(\{ -2,\ 5,\ 7 \}\) ### 2. **Range** The **range** of a relation consists of all the **second elements** (outputs) in each ordered pair. - **Second elements**: \(4, 4, 5, 13\) Again, listing each unique output once. - **Range**: \(\{ 4,\ 5,\ 13 \}\) ### 3. **Determining if the Relation is a Function** A **function** is a special type of relation where **each input is associated with exactly one output**. In other words, no two ordered pairs should have the same first element paired with different second elements. Let's examine the given relation: - \(5\) is paired with **4** in \((5, 4)\) - \(5\) is also paired with **13** in \((5, 13)\) Here, the input \(5\) is associated with **two different outputs** (\(4\) and \(13\)). This violates the definition of a function. - **Conclusion**: The relation **does not** represent a function. ### **Summary** - **Domain**: \(\{ -2,\ 5,\ 7 \}\) - **Range**: \(\{ 4,\ 5,\ 13 \}\) - **Is it a function?**: **No**, because the input \(5\) corresponds to multiple outputs.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if this relation represents a function, we first identify the domain and range. The domain consists of all the first elements (inputs) of the ordered pairs: \( \{5, -2, 7\} \). The range consists of the second elements (outputs): \( \{4, 5, 13\} \). However, since the input value \( 5 \) corresponds to two different outputs \( 4 \) and \( 13 \), this relation does not represent a function. A function can only have one output for each input! Now that you know what makes a function tick, remember that a good way to check for function status is to see if any inputs repeat with different outputs. It’s a common mistake to overlook repeated inputs—so always double-check!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad