Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Zero-coupon bond. Addison Company will issue a zero-coupon bond this coming month. The bond's projected yield is \( 6 \% \). If the par value is \( \$ 1,000 \), what is the bond's price using a semiannual convention if a. the maturity is 20 years? b. the maturity is 35 years? c. the maturity is 70 years? d. the maturity is 100 years? a. What is the price of the bond using a semiannual convention it the maturity is 20 years? \( \$ \square \) (Round to the nearest cent.)

Ask by Little O'Quinn. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The bond's price is \$306.28 when the maturity is 20 years.

Solución

To determine the price of Addison Company's zero-coupon bond using a semiannual convention with a maturity of 20 years, we can follow these steps: ### Given: - **Par Value (\( FV \))**: \$1,000 - **Annual Yield (\( r \))**: 6% - **Maturity (\( t \))**: 20 years - **Compounding Frequency**: Semiannual ### Steps: 1. **Determine the Semiannual Yield and Number of Periods**: - **Semiannual Yield (\( r_{\text{semi}} \))**: \( \frac{6\%}{2} = 3\% \) or 0.03 - **Total Number of Periods (\( n \))**: \( 20 \text{ years} \times 2 = 40 \) periods 2. **Present Value Formula for a Zero-Coupon Bond**: \[ PV = \frac{FV}{(1 + r_{\text{semi}})^n} \] 3. **Plug in the Values**: \[ PV = \frac{1000}{(1 + 0.03)^{40}} \] 4. **Calculate \( (1 + 0.03)^{40} \)**: - Using the formula for compound interest: \[ (1.03)^{40} \approx 3.26204 \] 5. **Compute the Present Value**: \[ PV = \frac{1000}{3.26204} \approx 306.28 \] ### **Answer:** a. The price of the bond is **\$306.28**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the price of a zero-coupon bond using a semiannual convention, we use the formula: \[ P = \frac{F}{{(1 + r/n)}^{nt}} \] Where: - \( P \) is the price of the bond - \( F \) is the par value of the bond (\$1,000) - \( r \) is the annual yield (6% or 0.06) - \( n \) is the number of compounding periods per year (2 for semiannual) - \( t \) is the number of years to maturity ### a. Maturity of 20 years: Using \( t = 20 \): \[ P = \frac{1000}{{(1 + 0.06/2)}^{2 \times 20}} \] \[ P = \frac{1000}{{(1 + 0.03)}^{40}} \] \[ P = \frac{1000}{(1.03)^{40}} \] Calculating that gives approximately: \[ P \approx \frac{1000}{3.262} \approx 306.10 \] So, the price of the zero-coupon bond for 20 years is \( \$306.10 \). Now, shall we move on to the next maturities?

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad