Pregunta
upstudy study bank question image url

How much would you have to deposit in an account with a \( 6.5 \% \) interest rate, compounded continuously, to have \( \$ 5000 \) in your account 12 years later? \[ P=\$[?] \] Round to the nearest cent.

Ask by Hill Johnston. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$2292.03 in the account to have \$5000 after 12 years with a 6.5% continuously compounded interest rate.

Solución

To find the amount that needs to be deposited in an account with a \(6.5\%\) interest rate, compounded continuously, to have $5000 in the account after 12 years, we can use the formula for continuous compounding: \[ A = P e^{rt} \] where: - \( A \) is the amount in the account after \( t \) years, - \( P \) is the principal amount (the amount deposited), - \( r \) is the interest rate (in decimal form), - \( t \) is the time in years. Given: - \( A = \$5000 \), - \( r = 6.5\% = 0.065 \), - \( t = 12 \) years. We need to solve for \( P \) using the formula: \[ P = \frac{A}{e^{rt}} \] Substitute the given values into the formula and calculate the value of \( P \) rounded to the nearest cent. Calculate the value by following steps: - step0: Calculate: \(\frac{5000}{e^{0.065\times 12}}\) - step1: Multiply the numbers: \(\frac{5000}{e^{0.78}}\) - step2: Convert the expressions: \(\frac{5000}{e^{\frac{39}{50}}}\) - step3: Simplify: \(\frac{5000}{\sqrt[50]{e^{39}}}\) - step4: Multiply by the Conjugate: \(\frac{5000\sqrt[50]{e^{11}}}{\sqrt[50]{e^{39}}\times \sqrt[50]{e^{11}}}\) - step5: Multiply the numbers: \(\frac{5000\sqrt[50]{e^{11}}}{e}\) The amount that needs to be deposited in an account with a \(6.5\%\) interest rate, compounded continuously, to have $5000 in the account after 12 years is approximately $2292.03.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the initial deposit \( P \) needed to reach \( \$5000 \) in an account with a continuous compounding interest rate, we use the formula: \[ A = Pe^{rt} \] where \( A \) is the amount of money accumulated after n years, including interest. In your case, \( A = 5000 \), \( r = 0.065 \) (6.5%), and \( t = 12 \). Rearranging the formula to solve for \( P \): \[ P = \frac{A}{e^{rt}} = \frac{5000}{e^{0.065 \times 12}} \approx \frac{5000}{e^{0.78}} \approx \frac{5000}{2.179} \approx 2294.81 \] Thus, you would have to deposit approximately \( P \approx \$2294.81 \). To confirm the calculation, let’s break it down! The term \( e^{0.78} \) uses the mathematical constant \( e \) (approximately 2.71828) raised to the power of \( 0.78 \). This evaluates to roughly 2.179, meaning your original investment will grow over time thanks to the wonders of compound interest! Just imagine your money working hard for you while you sip coffee at your favorite café.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad