A purchaser paid \( \$ 1,539,13 \) for a computer system that originally cost 81,050 , If the markup was \( 21 \% \) of the \( 81,539,13 \) selling price, then what is the percent markup based on cost? (Round to the nearest tenth percent) select one: a a, \( 26.6 \% \) b, \( 81.0 \% \) c, \( 79.7 \% \) d. \( 35.7 \% \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s break it down! The selling price \( S \) is given as \( 1,539.13 \). The markup is \( 21\% \) of this selling price, so the markup amount \( M \) can be calculated: \[ M = 0.21 \times 1,539.13 \approx 323.21. \] Now, to find the cost price \( C \), we subtract the markup from the selling price: \[ C = S - M = 1,539.13 - 323.21 \approx 1,215.92. \] To find the percentage markup based on the cost, we use the formula: \[ \text{Markup \% based on cost} = \left( \frac{M}{C} \right) \times 100 \approx \left( \frac{323.21}{1215.92} \right) \times 100 \approx 26.6\%. \] So the answer is \( a \), \( 26.6\% \).