Pregunta
upstudy study bank question image url

Select the correct answer. A faucet can fill a bathtub in 6 minutes. The drain can empty- the tub in 10 minutes. If both the fauc is represented by this expression, where \( t \) is the number of minutes it will take to completely fill the \( \frac{t}{6}-\frac{t}{10} \) Which expression can also represent this situation? A. \( \frac{4 t}{15} \) B. \( \frac{t+16}{60} \) C. \( \frac{t^{2}}{60} \) D. \( \frac{t}{15} \)

Ask by Lane George. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct expression is \( \frac{t}{15} \), which is option D.

Solución

To determine the correct expression that represents the situation where a faucet fills a bathtub while a drain empties it, let's analyze the problem step by step. ### Given: - **Faucet's filling rate:** The faucet can fill the bathtub in 6 minutes. This means the faucet fills \( \frac{1}{6} \) of the tub per minute. - **Drain's emptying rate:** The drain can empty the bathtub in 10 minutes. This means the drain empties \( \frac{1}{10} \) of the tub per minute. ### Net Rate of Filling: When both the faucet and the drain are open simultaneously, the net rate at which the tub is being filled is the filling rate minus the emptying rate: \[ \text{Net rate} = \frac{1}{6} - \frac{1}{10} \] To subtract these fractions, find a common denominator (which is 30): \[ \frac{1}{6} = \frac{5}{30}, \quad \frac{1}{10} = \frac{3}{30} \] \[ \text{Net rate} = \frac{5}{30} - \frac{3}{30} = \frac{2}{30} = \frac{1}{15} \] This means the tub is being filled at a rate of \( \frac{1}{15} \) of the tub per minute when both the faucet and the drain are open. ### Expression Representation: Given that \( t \) is the number of minutes it takes to completely fill the tub, the total amount filled can be represented by: \[ \frac{t}{6} - \frac{t}{10} = \frac{t}{15} \] This simplifies to: \[ \frac{t}{15} \] ### Conclusion: Among the provided options, the expression \( \frac{t}{15} \) accurately represents the situation. **Answer:** **D. \( \frac{t}{15} \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's calculate the relationship between the faucet filling the bathtub and the drain emptying it. The faucet fills the tub at a rate of \( \frac{1}{6} \) of the tub per minute, while the drain empties it at a rate of \( \frac{1}{10} \) of the tub per minute. When we combine these rates, we can represent the net filling rate as: \[ \text{Net Rate} = \frac{1}{6} - \frac{1}{10} \] Finding a common denominator (which is 30) gives: \[ \frac{5}{30} - \frac{3}{30} = \frac{2}{30} = \frac{1}{15} \] Thus, the entire expression for the situation is \( \frac{t}{15} \) (since it denotes how much of the tub is filled over time \( t \)). Therefore, option D \( \frac{t}{15} \) is the correct answer. Now, let's have some fun with this! If you ever wondered how much math is involved in your everyday life, think about your bathtub! Balancing the rates of filling and draining involves a bit of algebra, but it’s a practical illustration of using fractions, a skill you employ in countless scenarios, from cooking to budgeting! Also, have you ever considered how your choice of faucet affects water usage? Choosing one with better flow efficiency can significantly reduce your water bill and conserve resources. It’s not just about filling the tub; it’s about ensuring we're bathing sustainably!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad