Responder
**Problem 17:**
- **Zeros and x-intercepts:** 3
- **Turning points:** Up to 8
- **End behavior:** As \( x \to +\infty \), \( f(x) \to +\infty \); as \( x \to -\infty \), \( f(x) \to -\infty \)
**Problem 18:**
- **Zeros and x-intercepts:** 1
- **Turning points:** Up to 4
- **End behavior:** As \( x \to +\infty \), \( f(x) \to +\infty \); as \( x \to -\infty \), \( f(x) \to -\infty \)
Solución
Let's analyze each polynomial function to determine the possible number of real zeros, \( x \)-intercepts, turning points, and end behavior.
---
### **17) \( f(x) = 27x^{9} + 8x^{6} - 27x^{3} - 8 \)**
**a. Factoring the Polynomial:**
1. **Group Terms:**
\[
27x^9 - 27x^3 + 8x^6 - 8 = 27x^3(x^6 - 1) + 8(x^6 - 1) = (27x^3 + 8)(x^6 - 1)
\]
2. **Factor Further:**
\[
27x^3 + 8 = (3x)^3 + 2^3 = (3x + 2)(9x^2 - 6x + 4)
\]
\[
x^6 - 1 = (x^3 - 1)(x^3 + 1) = (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)
\]
3. **Complete Factorization:**
\[
f(x) = 3(x + \frac{2}{3})(9x^2 - 6x + 4)(x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1)
\]
**b. Real Zeros and \( x \)-Intercepts:**
- **Linear Factors:**
- \( 3x + 2 = 0 \) → \( x = -\frac{2}{3} \)
- \( x - 1 = 0 \) → \( x = 1 \)
- \( x + 1 = 0 \) → \( x = -1 \)
- **Quadratic Factors:**
- \( 9x^2 - 6x + 4 \): Discriminant \( D = (-6)^2 - 4 \cdot 9 \cdot 4 = 36 - 144 = -108 < 0 \) → No real zeros.
- \( x^2 + x + 1 \): Discriminant \( D = 1 - 4 = -3 < 0 \) → No real zeros.
- \( x^2 - x + 1 \): Discriminant \( D = 1 - 4 = -3 < 0 \) → No real zeros.
**Summary for \( f(x) \):**
- **Real Zeros:** 3
- **\( x \)-Intercepts:** 3
- **Turning Points:** Up to \( 9 - 1 = 8 \)
- **End Behavior:**
- As \( x \to +\infty \), \( f(x) \to +\infty \)
- As \( x \to -\infty \), \( f(x) \to -\infty \)
---
### **18) \( f(x) = 3x^{5} + 9x^{4} + 34x^{3} + 102x^{2} + 63x + 189 \)**
**a. Finding Real Zeros:**
1. **Rational Root Theorem:** Possible rational roots are factors of 189 divided by factors of 3, i.e., \( \pm1, \pm3, \pm7, \pm9, \ldots \).
2. **Testing \( x = -3 \):**
\[
f(-3) = 3(-3)^5 + 9(-3)^4 + 34(-3)^3 + 102(-3)^2 + 63(-3) + 189 = 0
\]
So, \( x = -3 \) is a root.
3. **Polynomial Division:** Dividing \( f(x) \) by \( (x + 3) \) yields:
\[
f(x) = (x + 3)(3x^4 + 34x^2 + 63)
\]
4. **Analyzing \( 3x^4 + 34x^2 + 63 \):**
- Let \( y = x^2 \):
\[
3y^2 + 34y + 63 = 0
\]
- Discriminant \( D = 34^2 - 4 \cdot 3 \cdot 63 = 1156 - 756 = 400 \), so:
\[
y = \frac{-34 \pm 20}{6} \Rightarrow y = -\frac{7}{3}, -9
\]
- Since \( y = x^2 \) cannot be negative, there are no additional real zeros.
**Summary for \( f(x) \):**
- **Real Zeros:** 1
- **\( x \)-Intercepts:** 1
- **Turning Points:** Up to \( 5 - 1 = 4 \)
- **End Behavior:**
- As \( x \to +\infty \), \( f(x) \to +\infty \)
- As \( x \to -\infty \), \( f(x) \to -\infty \)
---
### **Final Summary:**
**Problem 17 Answer:**
- **Real zeros and x-intercepts:** Exactly three.
- **Turning points:** Up to eight.
- **End behavior:** As \( x \) approaches \( +\infty \), \( f(x) \) tends to \( +\infty \) and as \( x \) approaches \( -\infty \), \( f(x) \) tends to \( -\infty \).
**Problem 18 Answer:**
- **Real zeros and x-intercepts:** Exactly one.
- **Turning points:** Up to four.
- **End behavior:** As \( x \) approaches \( +\infty \), \( f(x) \) tends to \( +\infty \) and as \( x \) approaches \( -\infty \), \( f(x) \) tends to \( -\infty \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución