\( \frac{1-cos2a}{sin2a}=tana \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To tackle this identity, it's helpful to remember some basic trigonometric identities. The expression \( \frac{1 - \cos 2a}{\sin 2a} \) can be transformed using the identity \( 1 - \cos 2a = 2 \sin^2 a \) and \( \sin 2a = 2 \sin a \cos a \). Plugging these into the equation gives: \[ \frac{2 \sin^2 a}{2 \sin a \cos a} = \frac{\sin a}{\cos a} = \tan a \] Voilà! The left-hand side simplifies beautifully to the right-hand side, proving the identity. To solidify this knowledge, practice by deriving similar identities or testing values for different angles. Calculating values such as when \( a = 30^\circ \) or \( a = 45^\circ \) can give insights into the behavior of trigonometric functions and their relationships, making your future math adventures more enjoyable!