Pregunta
implify the \( \left(8 a^{3} b^{9}\right)^{1 / 3} \)
Ask by Collins Riley. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\left(8 a^{3} b^{9}\right)^{\frac{1}{3}} = 2 a b^{3}
\]
Solución
Certainly! Let's simplify the expression:
\[
\left(8 a^{3} b^{9}\right)^{\frac{1}{3}}
\]
### Step 1: Apply the Exponent to Each Factor
When you have an expression raised to a power, you can distribute the exponent to each factor inside the parentheses:
\[
\left(8 a^{3} b^{9}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}} \times \left(a^{3}\right)^{\frac{1}{3}} \times \left(b^{9}\right)^{\frac{1}{3}}
\]
### Step 2: Simplify Each Term Individually
1. **Simplify \(8^{\frac{1}{3}}\):**
The cube root of 8 is 2 because \(2^3 = 8\).
\[
8^{\frac{1}{3}} = 2
\]
2. **Simplify \(\left(a^{3}\right)^{\frac{1}{3}}\):**
When you raise a power to another power, you multiply the exponents.
\[
\left(a^{3}\right)^{\frac{1}{3}} = a^{3 \times \frac{1}{3}} = a^{1} = a
\]
3. **Simplify \(\left(b^{9}\right)^{\frac{1}{3}}\):**
Similarly, multiply the exponents.
\[
\left(b^{9}\right)^{\frac{1}{3}} = b^{9 \times \frac{1}{3}} = b^{3}
\]
### Step 3: Combine the Simplified Terms
Now, multiply the simplified results together:
\[
2 \times a \times b^{3} = 2 a b^{3}
\]
### Final Simplified Form
\[
\left(8 a^{3} b^{9}\right)^{\frac{1}{3}} = 2 a b^{3}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify \( \left(8 a^{3} b^{9}\right)^{1 / 3} \), we can apply the exponent rule which states that \( (x^m)^n = x^{mn} \). First, we simplify each component inside the parentheses: 1. The coefficient \( 8 \) can be simplified: \( 8^{1/3} = 2 \). 2. For \( a^{3} \): \( (a^{3})^{1/3} = a^{3 \cdot (1/3)} = a^{1} = a \). 3. For \( b^{9} \): \( (b^{9})^{1/3} = b^{9 \cdot (1/3)} = b^{3} \). Now, combining all these parts together gives: \[ \left(8 a^{3} b^{9}\right)^{1 / 3} = 2 a b^{3}. \] So, the simplified expression is \( 2 a b^{3} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium