Responder
**Solutions:**
1. **Problem 2:** No real solution.
2. **Problem 4:** \( x = 36 \).
3. **Problem 6:** \( x = 5 \) and \( x = -5 \).
4. **Problem 8:** \( x = -1 \).
5. **Problem 10:** \( x = -4 \).
6. **Problem 12:** \( x = 2 \).
Solución
Let's solve each of the given equations for \( x \):
---
### **Problem 2**
\[
\sqrt{x - 3} + 3 = 0
\]
**Solution:**
1. Isolate the square root:
\[
\sqrt{x - 3} = -3
\]
2. **Observation:** The square root of a real number is always non-negative. Therefore, \( \sqrt{x - 3} \) cannot be equal to \(-3\).
**Conclusion:**
**No real solution** exists for this equation.
---
### **Problem 4**
\[
\frac{\sqrt{x}}{\sqrt{2}} = 3\sqrt{2}
\]
**Solution:**
1. Multiply both sides by \( \sqrt{2} \):
\[
\sqrt{x} = 3\sqrt{2} \times \sqrt{2} = 3 \times 2 = 6
\]
2. Square both sides to solve for \( x \):
\[
x = 6^2 = 36
\]
3. **Verification:**
\[
\frac{\sqrt{36}}{\sqrt{2}} = \frac{6}{\sqrt{2}} = 3\sqrt{2}
\]
The solution satisfies the original equation.
**Conclusion:**
**\( x = 36 \)**
---
### **Problem 6**
\[
\sqrt{x^2 - 9} = 4
\]
**Solution:**
1. Square both sides:
\[
x^2 - 9 = 16 \Rightarrow x^2 = 25
\]
2. Solve for \( x \):
\[
x = \pm 5
\]
3. **Verification:**
- For \( x = 5 \):
\[
\sqrt{5^2 - 9} = \sqrt{25 - 9} = \sqrt{16} = 4
\]
- For \( x = -5 \):
\[
\sqrt{(-5)^2 - 9} = \sqrt{25 - 9} = \sqrt{16} = 4
\]
Both solutions satisfy the original equation.
**Conclusion:**
**\( x = 5 \) and \( x = -5 \)**
---
### **Problem 8**
\[
\sqrt{x + 5} - x = 3
\]
**Solution:**
1. Let \( y = \sqrt{x + 5} \). Then:
\[
y - x = 3 \Rightarrow x = y - 3
\]
2. Substitute \( x = y - 3 \) into \( y^2 = x + 5 \):
\[
y^2 = (y - 3) + 5 \Rightarrow y^2 = y + 2 \Rightarrow y^2 - y - 2 = 0
\]
3. Solve the quadratic equation:
\[
y = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm 3}{2} \Rightarrow y = 2 \text{ or } y = -1
\]
Since \( y \) represents a square root, \( y \geq 0 \). Thus, \( y = 2 \).
4. Find \( x \):
\[
x = y - 3 = 2 - 3 = -1
\]
5. **Verification:**
\[
\sqrt{-1 + 5} - (-1) = \sqrt{4} + 1 = 2 + 1 = 3
\]
The solution satisfies the original equation.
**Conclusion:**
**\( x = -1 \)**
---
### **Problem 10**
\[
x + \sqrt{5 - x} + 1 = 0
\]
**Solution:**
1. Rearrange the equation:
\[
x + 1 = -\sqrt{5 - x}
\]
Since \( \sqrt{5 - x} \geq 0 \), it follows that \( x + 1 \leq 0 \) (i.e., \( x \leq -1 \)).
2. Let \( t = \sqrt{5 - x} \). Then:
\[
x = -t - 1
\]
3. Substitute into \( t = \sqrt{5 - x} \):
\[
t = \sqrt{5 - (-t - 1)} = \sqrt{6 + t}
\]
4. Square both sides:
\[
t^2 = 6 + t \Rightarrow t^2 - t - 6 = 0
\]
5. Solve the quadratic equation:
\[
t = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2} \Rightarrow t = 3 \text{ or } t = -2
\]
Since \( t \geq 0 \), \( t = 3 \).
6. Find \( x \):
\[
x = -3 - 1 = -4
\]
7. **Verification:**
\[
-4 + \sqrt{5 - (-4)} + 1 = -4 + \sqrt{9} + 1 = -4 + 3 + 1 = 0
\]
The solution satisfies the original equation.
**Conclusion:**
**\( x = -4 \)**
---
### **Problem 12**
\[
x + 2\sqrt{x - 1} = 4
\]
**Solution:**
1. **Domain:** \( x - 1 \geq 0 \Rightarrow x \geq 1 \)
2. Rearrange the equation:
\[
2\sqrt{x - 1} = 4 - x
\]
Since \( 2\sqrt{x - 1} \geq 0 \), it follows that \( 4 - x \geq 0 \Rightarrow x \leq 4 \).
Thus, \( x \in [1, 4] \).
3. Let \( t = \sqrt{x - 1} \). Then:
\[
x = t^2 + 1
\]
4. Substitute into the equation:
\[
2t = 4 - (t^2 + 1) \Rightarrow 2t = 3 - t^2 \Rightarrow t^2 + 2t - 3 = 0
\]
5. Solve the quadratic equation:
\[
t = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} \Rightarrow t = 1 \text{ or } t = -3
\]
Since \( t \geq 0 \), \( t = 1 \).
6. Find \( x \):
\[
x = 1^2 + 1 = 2
\]
7. **Verification:**
\[
2 + 2\sqrt{2 - 1} = 2 + 2 \times 1 = 4
\]
The solution satisfies the original equation.
**Conclusion:**
**\( x = 2 \)**
---
### **Summary of Solutions**
- **Problem 2:** No real solution.
- **Problem 4:** \( x = 36 \).
- **Problem 6:** \( x = 5 \) and \( x = -5 \).
- **Problem 8:** \( x = -1 \).
- **Problem 10:** \( x = -4 \).
- **Problem 12:** \( x = 2 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución