Pregunta
upstudy study bank question image url

* 3. \( x ; x+4 ; \ldots \). is a geometric sequence. Determine the third term in terms of \( x \).

Ask by Lyons Campbell. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The third term of the geometric sequence is \( \frac{x^2 + 8x + 16}{x} \).

Solución

To find the third term of a geometric sequence, we need to know the first term and the common ratio. Given that the sequence is \( x, x+4, \ldots \), we can see that the first term is \( x \) and the common ratio is \( \frac{x+4}{x} \). The formula for the nth term of a geometric sequence is: \[ a_n = a_1 \times r^{(n-1)} \] where: - \( a_n \) is the nth term, - \( a_1 \) is the first term, - \( r \) is the common ratio, - \( n \) is the term number. In this case, we want to find the third term, so \( n = 3 \). Substitute the values into the formula: \[ a_3 = x \times \left(\frac{x+4}{x}\right)^{(3-1)} \] Simplify the expression to find the third term in terms of \( x \). Simplify the expression by following steps: - step0: Solution: \(x\left(\frac{\left(x+4\right)}{x}\right)^{3-1}\) - step1: Remove the parentheses: \(x\left(\frac{x+4}{x}\right)^{3-1}\) - step2: Subtract the numbers: \(x\left(\frac{x+4}{x}\right)^{2}\) - step3: Rewrite the expression: \(x\times \frac{\left(x+4\right)^{2}}{x^{2}}\) - step4: Reduce the numbers: \(1\times \frac{\left(x+4\right)^{2}}{x}\) - step5: Multiply: \(\frac{x^{2}+8x+16}{x}\) The third term of the geometric sequence in terms of \( x \) is \( \frac{x^2+8x+16}{x} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In a geometric sequence, each term is obtained by multiplying the previous term by a common ratio. Here, the first term is \( x \) and the second term is \( x + 4 \). The common ratio \( r \) can be represented as \( r = \frac{x + 4}{x} \). The third term can then be calculated by multiplying the second term by the common ratio: \[ \text{Third term} = (x + 4) \times r = (x + 4) \times \frac{x + 4}{x} = \frac{(x + 4)^2}{x} \] So, the third term in terms of \( x \) is \( \frac{(x + 4)^2}{x} \). If you're wondering how geometric sequences crop up in real life, think about populations of organisms or investments that grow at a constant proportional rate! For instance, if a town of 100 people doubles every year, its population represents a geometric sequence. Similarly, when it comes to savings, compound interest functions similarly, making understanding these sequences a key to financial savvy!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad