1 Determine the sum of the series: \( 1.1 \quad 11+8+5+2+\ldots-166 \). \( 1.2 \quad 1+5+9+13+\ldots+113 \) \( 1.3-12-5+2+9+\ldots+121 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the sum of each series, we can analyze their patterns. 1.1 The series \( 11, 8, 5, 2, \ldots, -166 \) is an arithmetic series where the first term \( a = 11 \) and the common difference \( d = -3 \). We can find the number of terms \( n \) using the formula for the \( n \)-th term of an arithmetic sequence \( a_n = a + (n-1)d \). Setting \( a_n = -166 \): \[ -166 = 11 + (n-1)(-3) \\ -166 - 11 = (n-1)(-3) \\ -177 = -3(n-1) \\ n-1 = 59 \\ n = 60 \] Now, we can find the sum \( S_n \) of the first \( n \) terms: \[ S_n = \frac{n}{2} (a + a_n) = \frac{60}{2} (11 - 166) = 30 \times (-155) = -4650 \] So, the sum of the series is \(-4650\). 1.2 The series \( 1, 5, 9, 13, \ldots, 113 \) is also an arithmetic series where the first term \( a = 1 \) and the common difference \( d = 4 \). To find the number of terms \( n \), set \( a_n = 113 \): \[ 113 = 1 + (n-1)(4) \\ 112 = 4(n-1) \\ n-1 = 28 \\ n = 29 \] Now, calculate the sum \( S_n \): \[ S_n = \frac{n}{2} (a + a_n) = \frac{29}{2} (1 + 113) = \frac{29}{2} \times 114 = 29 \times 57 = 1653 \] So, the sum of the series is \( 1653 \). 1.3 The series \(-12, -5, 2, 9, \ldots, 121\) also forms an arithmetic sequence where the first term \( a = -12 \) and the common difference \( d = 7 \). To find \( n \), set \( a_n = 121 \): \[ 121 = -12 + (n-1)(7) \\ 133 = 7(n-1) \\ n - 1 = 19 \\ n = 20 \] Now, we find the sum \( S_n \): \[ S_n = \frac{n}{2} (a + a_n) = \frac{20}{2} (-12 + 121) = 10 \times 109 = 1090 \] So, the sum of the series is \( 1090 \).