Use the formula for present value of money to calculate the amount you need to invest now in one lump sum in order to have \( \$ 100,000 \) after 18 years with an ApR of \( 9 \% \) compounded quarterly Round your answer to the nearest cent. If necessary.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the present value (PV), you can use the formula: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - FV = future value (\$100,000) - r = annual interest rate (9% or 0.09) - n = number of times interest is compounded per year (quarterly, so 4) - t = number of years (18) Plugging in the values: \[ PV = \frac{100,000}{(1 + 0.09/4)^{4 \times 18}} \] \[ PV = \frac{100,000}{(1 + 0.0225)^{72}} \] \[ PV = \frac{100,000}{(1.0225)^{72}} \] \[ PV = \frac{100,000}{4.59981} \] \[ PV \approx 21,739.18 \] So you would need to invest approximately **$21,739.18** today to reach $100,000 in 18 years at a 9% APR compounded quarterly.