Identify the least common denominator of \( \frac{x+3}{x^{2}+11 x+18} \) and \( \frac{-2 x}{x^{2}+6 x-27} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the least common denominator (LCD) of the two fractions \( \frac{x+3}{x^2 + 11x + 18} \) and \( \frac{-2x}{x^2 + 6x - 27} \), we need to factor the denominators. First, we factor the first denominator: \[ x^2 + 11x + 18 \] We look for two numbers that multiply to \( 18 \) and add up to \( 11 \). These numbers are \( 2 \) and \( 9 \). So, we can factor it as: \[ x^2 + 11x + 18 = (x + 2)(x + 9) \] Next, we factor the second denominator: \[ x^2 + 6x - 27 \] We look for two numbers that multiply to \( -27 \) and add up to \( 6 \). These numbers are \( 9 \) and \( -3 \). So, we can factor it as: \[ x^2 + 6x - 27 = (x + 9)(x - 3) \] Now we have the factored forms of both denominators: 1. \( (x + 2)(x + 9) \) 2. \( (x + 9)(x - 3) \) To find the least common denominator, we take each unique factor the greatest number of times it appears in either factorization: - The factor \( (x + 2) \) appears once. - The factor \( (x + 9) \) appears once in both. - The factor \( (x - 3) \) appears once. Thus, the least common denominator (LCD) is: \[ LCD = (x + 2)(x + 9)(x - 3) \] So the least common denominator for the given fractions is: \[ \boxed{(x + 2)(x + 9)(x - 3)} \]