Pregunta
(4) \( 1+a-\frac{2 a-1}{2} \) (7) \( \frac{2}{x}+\frac{5}{x+1} \)
Ask by Gordon Zimmerman. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Simplify the expressions:
1. \( 1 + a - \frac{2a - 1}{2} = \frac{3}{2} \)
2. \( \frac{2}{x} + \frac{5}{x + 1} = \frac{7x + 2}{x(x + 1)} \)
Solución
Certainly! Let's simplify each of the given expressions step by step.
---
### (4) Simplify \( 1 + a - \frac{2a - 1}{2} \)
**Step 1:** Combine like terms by expressing \(1\) and \(a\) with a common denominator.
\[
1 = \frac{2}{2}, \quad a = \frac{2a}{2}
\]
So,
\[
1 + a = \frac{2}{2} + \frac{2a}{2} = \frac{2 + 2a}{2}
\]
**Step 2:** Subtract the fraction \(\frac{2a - 1}{2}\):
\[
\frac{2 + 2a}{2} - \frac{2a - 1}{2} = \frac{2 + 2a - (2a - 1)}{2} = \frac{2 + 2a - 2a + 1}{2} = \frac{3}{2}
\]
**Final Simplified Form:**
\[
\boxed{\dfrac{3}{2}}
\]
---
### (7) Simplify \( \frac{2}{x} + \frac{5}{x + 1} \)
**Step 1:** Find a common denominator, which is \(x(x + 1)\).
\[
\frac{2}{x} = \frac{2(x + 1)}{x(x + 1)}, \quad \frac{5}{x + 1} = \frac{5x}{x(x + 1)}
\]
**Step 2:** Combine the fractions:
\[
\frac{2(x + 1)}{x(x + 1)} + \frac{5x}{x(x + 1)} = \frac{2x + 2 + 5x}{x(x + 1)} = \frac{7x + 2}{x(x + 1)}
\]
**Final Simplified Form:**
\[
\boxed{\dfrac{7x + 2}{x(x + 1)}}
\]
---
If you have any further questions or need additional explanations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify the expression \( 1+a-\frac{2 a-1}{2} \), start by rewriting \( \frac{2 a - 1}{2} \) as \( a - \frac{1}{2} \). This leads to \( 1 + a - (a - \frac{1}{2}) = 1 + a - a + \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2} \). For the expression \( \frac{2}{x}+\frac{5}{x+1} \), finding a common denominator is essential. The least common denominator is \( x(x+1) \). Rewrite the equation as \( \frac{2(x+1) + 5x}{x(x+1)} = \frac{2x + 2 + 5x}{x(x+1)} = \frac{7x + 2}{x(x+1)} \). Voilà! A beautiful rational expression that's primed for use.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium