Pregunta
Evaluate the piecewise function at the given values of the independent variable. \( f(x)=\left\{\begin{array}{ll}5 x+4 & \text { if } x<0 \\ 2 x+5 & \text { if } x \geq 0\end{array}\right. \) (a) \( f(-1) \) (b) \( f(0) \) (c) \( f(2) \)
Ask by Elliott Brewer. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(-1) = -1 \), \( f(0) = 5 \), \( f(2) = 9 \).
Solución
Let's evaluate the piecewise function \( f(x) \) at the specified values of \( x \):
\[
f(x) = \begin{cases}
5x + 4 & \text{if } x < 0 \\
2x + 5 & \text{if } x \geq 0
\end{cases}
\]
### (a) \( f(-1) \)
**Step 1:** Determine which part of the piecewise function to use.
Since \( -1 < 0 \), we use:
\[
f(x) = 5x + 4
\]
**Step 2:** Substitute \( x = -1 \) into the function.
\[
f(-1) = 5(-1) + 4 = -5 + 4 = -1
\]
**Answer:** \( f(-1) = -1 \)
---
### (b) \( f(0) \)
**Step 1:** Determine which part of the piecewise function to use.
Since \( 0 \geq 0 \), we use:
\[
f(x) = 2x + 5
\]
**Step 2:** Substitute \( x = 0 \) into the function.
\[
f(0) = 2(0) + 5 = 0 + 5 = 5
\]
**Answer:** \( f(0) = 5 \)
---
### (c) \( f(2) \)
**Step 1:** Determine which part of the piecewise function to use.
Since \( 2 \geq 0 \), we use:
\[
f(x) = 2x + 5
\]
**Step 2:** Substitute \( x = 2 \) into the function.
\[
f(2) = 2(2) + 5 = 4 + 5 = 9
\]
**Answer:** \( f(2) = 9 \)
---
**Summary of Results:**
- **(a)** \( f(-1) = -1 \)
- **(b)** \( f(0) = 5 \)
- **(c)** \( f(2) = 9 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
Let's evaluate the piecewise function \( f(x) \) at the given values. (a) For \( f(-1) \): Since \(-1 < 0\), we use the first part of the function: \[ f(-1) = 5(-1) + 4 = -5 + 4 = -1. \] (b) For \( f(0) \): Since \(0 \geq 0\), we use the second part of the function: \[ f(0) = 2(0) + 5 = 0 + 5 = 5. \] (c) For \( f(2) \): Since \(2 \geq 0\), we use the second part of the function: \[ f(2) = 2(2) + 5 = 4 + 5 = 9. \] So the evaluations are: (a) \( f(-1) = -1 \) (b) \( f(0) = 5 \) (c) \( f(2) = 9 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium