Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l }{ ( a + b ) ( a - b ) ( a ^ { 4 } + a ^ { 2 } b ^ { 2 } + b ^ { 4 } ) } \\ { = ( a ^ { 2 } - b ^ { 2 } ) ( a ^ { 4 } + a ^ { 2 } b ^ { 2 } + b ^ { 4 } ) } \\ { = a ^ { 6 } - b ^ { 8 } } \end{array} \right. \)

Ask by Morrison Robbins. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final expression should be \( a^6 - b^6 \) instead of \( a^6 - b^8 \).

Solución

Let's analyze the algebraic expression you've provided step by step to ensure its correctness. **Given Expression:** \[ \left. \begin{array} { l } { ( a + b ) ( a - b ) ( a ^ { 4 } + a ^ { 2 } b ^ { 2 } + b ^ { 4 } ) } \\ { = ( a ^ { 2 } - b ^ { 2 } ) ( a ^ { 4 } + a ^ { 2 } b ^ { 2 } + b ^ { 4 } ) } \\ { = a ^ { 6 } - b ^ { 8 } } \end{array} \right. \] Let's break this down: 1. **First Step: Expansion of \((a + b)(a - b)\)** \[ (a + b)(a - b) = a^2 - b^2 \] This step is correct and uses the difference of squares formula. 2. **Second Step: Multiplying \((a^2 - b^2)\) by \((a^4 + a^2b^2 + b^4)\)** \[ (a^2 - b^2)(a^4 + a^2b^2 + b^4) \] To multiply these two polynomials, we distribute each term in the first polynomial to each term in the second polynomial: \[ \begin{align*} & = a^2 \cdot a^4 + a^2 \cdot a^2b^2 + a^2 \cdot b^4 \\ & \quad - b^2 \cdot a^4 - b^2 \cdot a^2b^2 - b^2 \cdot b^4 \\ & = a^{6} + a^{4}b^{2} + a^{2}b^{4} - a^{4}b^{2} - a^{2}b^{4} - b^{6} \end{align*} \] Simplifying by combining like terms: \[ a^{6} - b^{6} \] 3. **Third Step: Mistake Identified** \[ a^{6} - b^{8} \] **Error:** The final expression should be \(a^{6} - b^{6}\), not \(a^{6} - b^{8}\). The mistake likely arose from an incorrect multiplication in the previous step. 4. **Correct Final Expression:** \[ (a + b)(a - b)(a^4 + a^2b^2 + b^4) = a^6 - b^6 \] **Summary:** - The expansion correctly leads to \(a^6 - b^6\). - The last term \( -b^8 \) is incorrect; it should be \( -b^6 \). **Additional Note:** Interestingly, the expression \(a^6 - b^6\) can be further factored using the difference of squares and the difference of cubes: \[ a^6 - b^6 = (a^3)^2 - (b^3)^2 = (a^3 - b^3)(a^3 + b^3) \] \[ = (a - b)(a^2 + ab + b^2)(a + b)(a^2 - ab + b^2) \] This shows the complete factorization of \(a^6 - b^6\), which might be useful depending on the context of your problem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the expression you've presented is an application of the difference of squares and polynomial identities? The expression \( (a + b)(a - b) \) utilizes the well-known identity \( a^2 - b^2 \), leading to a more complex factorization in the cubic and quartic terms. This technique simplifies algebraic expressions and is a cornerstone concept in algebra, especially when tackling higher degree polynomials! When working through these factorizations, a common mistake is to overlook the conditions under which such identities hold true. For instance, if you encounter indeterminate forms or complex numbers, ensure to apply these identities carefully. Always double-check your work by expanding the factors to confirm they equate to the original expression! It's a thrilling journey into the world of algebra!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad