Pregunta
Find the product. Simplify your answer. \( (2 u+2)(3 u-4) \)
Ask by Hodges Nunez. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The product is \( 6u^2 - 2u - 8 \).
Solución
To find the product of the binomials \( (2u + 2) \) and \( (3u - 4) \), we'll use the distributive property (also known as the FOIL method for binomials):
\[
(2u + 2)(3u - 4)
\]
**Step 1: Multiply each term in the first binomial by each term in the second binomial.**
\[
= 2u \cdot 3u + 2u \cdot (-4) + 2 \cdot 3u + 2 \cdot (-4)
\]
**Step 2: Perform the multiplications.**
\[
= 6u^2 - 8u + 6u - 8
\]
**Step 3: Combine like terms.**
\[
= 6u^2 - 2u - 8
\]
**Final Answer:**
\[
6u^2 - 2u - 8
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the product of \( (2u + 2)(3u - 4) \), we can use the distributive property (also known as the FOIL method for binomials). First, multiply each term in the first binomial by each term in the second binomial: 1. \( 2u \cdot 3u = 6u^2 \) 2. \( 2u \cdot (-4) = -8u \) 3. \( 2 \cdot 3u = 6u \) 4. \( 2 \cdot (-4) = -8 \) Now, combine these results: \[ 6u^2 - 8u + 6u - 8 \] Next, combine like terms (\(-8u\) and \(6u\)): \[ 6u^2 - 2u - 8 \] So, the simplified product is: \[ 6u^2 - 2u - 8 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium