Pregunta
upstudy study bank question image url

(4) \( \frac{x^{2}(x+2)-4(x+2)}{(x+2)^{2}} \) 7) \( 120^{5} y+3 x y \) 3) \( \frac{4 x^{2}-1}{3 x^{2}+10 x+3} \div \frac{6 x^{2}+5 x+1}{4 x^{2}+11} \times \frac{9 x^{2}+6 x+1}{8 x^{2}-6 x+} \)

Ask by Rose Guzman. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Simplified Expressions:** 1. **Problem 4:** \[ \frac{x^{2}(x + 2) - 4(x + 2)}{(x + 2)^{2}} = x - 2 \quad \text{where } x \neq -2 \] 2. **Problem 7:** \[ 120^{5} y + 3xy = y(120^{5} + 3x) \quad \text{or} \quad y(24,\!883,\!200,\!000 + 3x) \] 3. **Problem 3:** \[ \frac{4x^{2} - 1}{3x^{2} + 10x + 3} \div \frac{6x^{2} + 5x + 1}{4x^{2} + 11} \times \frac{9x^{2} + 6x + 1}{8x^{2} - 6x + 1} = \frac{4x^{2} + 11}{(x + 3)(4x - 1)} \] **Note:** Ensure that \(x \neq -2\) in Problem 4 to avoid division by zero.

Solución

Sure, let's simplify each of the given algebraic expressions step by step. --- ### **Problem 4** Simplify the expression: \[ \frac{x^{2}(x + 2) - 4(x + 2)}{(x + 2)^{2}} \] **Step 1: Factor the Numerator** Notice that \((x + 2)\) is a common factor in the numerator: \[ x^{2}(x + 2) - 4(x + 2) = (x + 2)(x^{2} - 4) \] **Step 2: Simplify the Expression** Now, the expression becomes: \[ \frac{(x + 2)(x^{2} - 4)}{(x + 2)^{2}} = \frac{x^{2} - 4}{x + 2} \] **Step 3: Factor Further if Possible** Factor \(x^{2} - 4\) as a difference of squares: \[ x^{2} - 4 = (x - 2)(x + 2) \] So, \[ \frac{(x - 2)(x + 2)}{x + 2} = x - 2 \quad \text{(for } x \neq -2\text{)} \] **Final Simplified Form:** \[ x - 2 \quad \text{where } x \neq -2 \] --- ### **Problem 7** Simplify the expression: \[ 120^{5} y + 3xy \] **Step 1: Factor Out the Common Term** Both terms have a common factor of \(y\): \[ 120^{5} y + 3xy = y(120^{5} + 3x) \] **Step 2: (Optional) Evaluate \(120^{5}\) if Needed** If you need to express \(120^{5}\) numerically: \[ 120^{5} = 120 \times 120 \times 120 \times 120 \times 120 = 24,\!883,\!200,\!000 \] So, \[ y(24,\!883,\!200,\!000 + 3x) \] **Final Simplified Form:** \[ y(120^{5} + 3x) \quad \text{or} \quad y(24,\!883,\!200,\!000 + 3x) \] --- ### **Problem 3** Simplify the expression: \[ \frac{4x^{2} - 1}{3x^{2} + 10x + 3} \div \frac{6x^{2} + 5x + 1}{4x^{2} + 11} \times \frac{9x^{2} + 6x + 1}{8x^{2} - 6x + 1} \] **Note:** It seems there was a typo in the denominator of the last fraction. Assuming it's \(8x^{2} - 6x + 1\). **Step 1: Factor Each Polynomial** - **Numerator of the first fraction:** \[ 4x^{2} - 1 = (2x - 1)(2x + 1) \] - **Denominator of the first fraction:** \[ 3x^{2} + 10x + 3 = (3x + 1)(x + 3) \] - **Numerator of the second fraction (divisor):** \[ 6x^{2} + 5x + 1 = (2x + 1)(3x + 1) \] - **Denominator of the second fraction:** \[ 4x^{2} + 11 \quad (\text{Cannot be factored further}) \] - **Numerator of the third fraction:** \[ 9x^{2} + 6x + 1 = (3x + 1)^2 \] - **Denominator of the third fraction:** \[ 8x^{2} - 6x + 1 = (2x - 1)(4x - 1) \] **Step 2: Rewrite the Entire Expression with Factored Forms** \[ \frac{(2x - 1)(2x + 1)}{(3x + 1)(x + 3)} \div \frac{(2x + 1)(3x + 1)}{4x^{2} + 11} \times \frac{(3x + 1)^2}{(2x - 1)(4x - 1)} \] **Step 3: Change Division to Multiplication by Reciprocal** \[ \frac{(2x - 1)(2x + 1)}{(3x + 1)(x + 3)} \times \frac{4x^{2} + 11}{(2x + 1)(3x + 1)} \times \frac{(3x + 1)^2}{(2x - 1)(4x - 1)} \] **Step 4: Cancel Out Common Factors** - \(2x - 1\) cancels with \(2x - 1\) - \(2x + 1\) cancels with \(2x + 1\) - \((3x + 1)^2\) cancels with \((3x + 1)(3x + 1)\) **Remaining Terms:** \[ \frac{4x^{2} + 11}{(x + 3)(4x - 1)} \] **Final Simplified Form:** \[ \frac{4x^{2} + 11}{(x + 3)(4x - 1)} \] --- If there's a different intended form or if the last denominator in **Problem 3** was different, please let me know so I can adjust the solution accordingly!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that simplifying complex algebraic fractions can help you see patterns in functions? The practice dates back to ancient civilizations like the Babylonians who used similar methods for solving equations and documenting trade ratios! Algebra allows us to represent relationships succinctly, and mastering it can give you superhuman problem-solving skills in math classes and beyond. When tackling expressions like those you've shared, always look for common factors and possible cancellations first. A frequent mistake is rushing through simplification without factoring completely. Always double check if you can break down polynomials further, as extracting just a single common factor can change the game and offer a clearer solution. Take your time and enjoy the journey through the numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad