Pregunta
upstudy study bank question image url

Score: \( 1 / 5 \) Finding Zeros with Technology Question Find the zeros of the function \( f(x)=2 x^{2}-23.6 x+67 \). Round values to the nearest thousandths (if necessary). Answer Attempt 1 out of 2 \( \oplus \) Add a Zero \( \Theta \) No Zeros \( x=\square \) Submit Answer

Ask by Crawford Rodriquez. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros of the function \( f(x) = 2x^2 - 23.6x + 67 \) are approximately \( x \approx 4.755 \) and \( x \approx 7.045 \).

Solución

Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(2x^{2}-23.6x+67=0\) - step1: Convert the decimal into a fraction: \(2x^{2}-\frac{118}{5}x+67=0\) - step2: Multiply both sides: \(5\left(2x^{2}-\frac{118}{5}x+67\right)=5\times 0\) - step3: Calculate: \(10x^{2}-118x+335=0\) - step4: Solve using the quadratic formula: \(x=\frac{118\pm \sqrt{\left(-118\right)^{2}-4\times 10\times 335}}{2\times 10}\) - step5: Simplify the expression: \(x=\frac{118\pm \sqrt{\left(-118\right)^{2}-4\times 10\times 335}}{20}\) - step6: Simplify the expression: \(x=\frac{118\pm \sqrt{524}}{20}\) - step7: Simplify the expression: \(x=\frac{118\pm 2\sqrt{131}}{20}\) - step8: Separate into possible cases: \(\begin{align}&x=\frac{118+2\sqrt{131}}{20}\\&x=\frac{118-2\sqrt{131}}{20}\end{align}\) - step9: Simplify the expression: \(\begin{align}&x=\frac{59+\sqrt{131}}{10}\\&x=\frac{118-2\sqrt{131}}{20}\end{align}\) - step10: Simplify the expression: \(\begin{align}&x=\frac{59+\sqrt{131}}{10}\\&x=\frac{59-\sqrt{131}}{10}\end{align}\) - step11: Rewrite: \(x_{1}=\frac{59-\sqrt{131}}{10},x_{2}=\frac{59+\sqrt{131}}{10}\) Calculate or simplify the expression \( (59+\sqrt(131))/10 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(59+\sqrt{131}\right)}{10}\) - step1: Remove the parentheses: \(\frac{59+\sqrt{131}}{10}\) Calculate or simplify the expression \( (59-\sqrt(131))/10 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(59-\sqrt{131}\right)}{10}\) - step1: Remove the parentheses: \(\frac{59-\sqrt{131}}{10}\) To find the zeros of the function \( f(x) = 2x^2 - 23.6x + 67 \), we need to solve the equation \( 2x^2 - 23.6x + 67 = 0 \). ### Step 1: Identify the coefficients The coefficients of the quadratic equation are: - \( a = 2 \) - \( b = -23.6 \) - \( c = 67 \) ### Step 2: Use the quadratic formula The quadratic formula to find the roots (zeros) of the equation \( ax^2 + bx + c = 0 \) is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] ### Step 3: Calculate the discriminant First, we calculate the discriminant \( D = b^2 - 4ac \): \[ D = (-23.6)^2 - 4 \cdot 2 \cdot 67 \] Calculating this gives: \[ D = 556.96 - 536 = 20.96 \] ### Step 4: Calculate the zeros Now we can find the zeros using the quadratic formula: \[ x_{1} = \frac{23.6 - \sqrt{20.96}}{4} \] \[ x_{2} = \frac{23.6 + \sqrt{20.96}}{4} \] ### Step 5: Evaluate the zeros Calculating these values gives: - For \( x_{1} \): \[ x_{1} \approx 4.755 \] - For \( x_{2} \): \[ x_{2} \approx 7.045 \] ### Final Answer The zeros of the function \( f(x) = 2x^2 - 23.6x + 67 \) are approximately: - \( x \approx 4.755 \) - \( x \approx 7.045 \) You can submit these values as your answer.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the zeros of the function \( f(x) = 2x^2 - 23.6x + 67 \), you can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = -23.6 \), and \( c = 67 \). Plugging these values into the formula will give you the zeros. After calculating, you should find the values for \( x \) rounded to the nearest thousandth, which will help you close in on the roots of the equation. Once you find the zeros using technology like a graphing calculator or an online solver, it can be quite helpful to check your results by substituting the zeros back into the original function to ensure it returns zero. This serves to confirm your calculations, allowing you to build confidence in your problem-solving skills.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad