Given a geometric sequence. \( 36 ;-18 ; 9 ; \ldots \) 12.1 Determine the value of \( r \), the common ratio. 12.2 Calculate \( n \) if \( T_{2}=\frac{9}{4096} \). 12.3 Calculate \( S_{\infty} \) 12.3 Calculate the value of \( \frac{T_{1}+T_{3}^{\prime}+T_{5}+T_{7}+\cdots+T_{499}}{T_{2}+T_{4}^{4}+T_{6}+T_{8}+\cdots+T_{500}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the common ratio \( r \) of the sequence \( 36, -18, 9, \ldots \), we divide the second term by the first term: \[ r = \frac{-18}{36} = -\frac{1}{2}. \] Next, to calculate \( n \) for \( T_{2} = \frac{9}{4096} \), we use the formula for the \( n \)-th term of a geometric sequence, \( T_n = a \cdot r^{n-1} \): \[ T_{2} = 36 \left(-\frac{1}{2}\right)^{2-1} = 36 \cdot \left(-\frac{1}{2}\right) = -18. \] Equating \( -18 \) to \( \frac{9}{4096} \) and solving will lead you to \( n \). For the sum \( S_{\infty} \), since the absolute value of \( r \) is less than 1, the formula is: \[ S_{\infty} = \frac{T_1}{1 - r} = \frac{36}{1 - \left(-\frac{1}{2}\right)} = \frac{36}{\frac{3}{2}} = 24. \] Finally, for the ratio given, we notice a pattern in \( T_n \) terms. Picking out odd and even indexed terms, use the geometric properties to simplify the sums in your calculation. Detailed summation will yield your final result, revealing interesting connections among the terms! Fun fact: The world’s most famous geometric sequence appears in nature too—think of the spirals of seashells or the arrangement of leaves around a stem! They follow similar mathematical principles!