Pregunta
upstudy study bank question image url

Suppose that the total cost function, in dollars, for the production of \( x \) units of a product is given by the equation shown below. \[ (x)=11,250+65 x+0.5 x^{2} \] Find the equation of the average cost function, \( \bar{C}(x) \). \( \bar{C}(x)= \) (a) Find the instantaneous rate of change of average cost with respect to the number of units produced, at any level of production. (b) Find the level of production at which this rate of change equals zero. \( x= \) (c) At the value found in part (b), which of the following is true? O The average cost function is greater than the total cost function. The tangent line to the total cost function is a horizontal line. The instantaneous rate of change of total cost is zero. The tangent line to the average cost function is a horizontal line.

Ask by Mckenzie Chandler. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) The average cost function is: \[ \bar{C}(x) = \frac{11,\!250}{x} + 65 + 0.5x \] (b) The instantaneous rate of change of average cost is: \[ \bar{C}'(x) = -\frac{11,\!250}{x^{2}} + 0.5 \] This rate equals zero at \( x = 150 \). (c) At \( x = 150 \), the tangent line to the average cost function is horizontal.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the average cost function, \( \bar{C}(x) \), we divide the total cost function \( C(x) \) by the number of units \( x \): \[ \bar{C}(x) = \frac{C(x)}{x} = \frac{11,250 + 65x + 0.5x^2}{x} = \frac{11,250}{x} + 65 + 0.5x \] Now, for part (a), the instantaneous rate of change of the average cost function with respect to \( x \) is found by differentiating \( \bar{C}(x) \): \[ \bar{C}'(x) = -\frac{11,250}{x^2} + 0.5 \] For part (b), to find when this rate equals zero, set \( \bar{C}'(x) = 0 \): \[ -\frac{11,250}{x^2} + 0.5 = 0 \implies \frac{11,250}{x^2} = 0.5 \implies 11,250 = 0.5 x^2 \implies x^2 = 22,500 \implies x = 150 \] So \( x = 150 \). For part (c), at \( x = 150 \), since we have found that the instantaneous rate of change of the average cost function is zero, this indicates that the tangent line to the average cost function is a horizontal line. Therefore, the correct statement is: "The tangent line to the average cost function is a horizontal line."

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad