4) \( \begin{array}{r}-3 x-3 y=3 \\ y=-5 x-17\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve this system of equations, we can substitute the expression for \( y \) from the second equation into the first. This gives us: \(-3x - 3(-5x - 17) = 3\). If we simplify that, we get: \(-3x + 15x + 51 = 3\) which simplifies to \(12x + 51 = 3\). Now, isolating \( x \) results in \(12x = 3 - 51\), or \(12x = -48\). Thus, \(x = -4\). Now substitute \( x = -4 \) back into \(y = -5(-4) - 17\) to find \( y \). This results in \(y = 20 - 17\) which gives \(y = 3\). So, the solution to the system is \( (x, y) = (-4, 3) \)! To plot these lines on a graph, you would graph the equations to visualize their intersection point. The first equation, when graphed, will be a straight line with a negative slope, and similarly for the second equation. Their intersection point indeed represents the solution we calculated!