4. Complete the following. a) Simplify: i) \( \left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}\right) \) ii) \( \left(a-\frac{1}{a}\right)^{2} \). b) Calculate the value of: i) \( a^{2}+\frac{1}{a^{2}} \), if \( a-\frac{1}{a}=3 \) ii) \( a^{3}-\frac{1}{a^{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify \( \left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}\right) \), we can distribute: \[ \left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}\right) = a\left(a^{2}+1+\frac{1}{a^{2}}\right) - \frac{1}{a}\left(a^{2}+1+\frac{1}{a^{2}}\right) \] This gives: \[ = a^3 + a - \left(a + \frac{1}{a} + \frac{1}{a^3}\right) = a^3 - \frac{1}{a^3} \] For \( \left(a-\frac{1}{a}\right)^{2} \), we find: \[ \left(a-\frac{1}{a}\right)^{2} = a^2 - 2\cdot a\cdot\frac{1}{a} + \frac{1}{a^2} = a^2 - 2 + \frac{1}{a^2} = a^2 + \frac{1}{a^2} - 2 \] Now, moving on to calculations: If \( a - \frac{1}{a} = 3 \): Using the identity \( a^2 + \frac{1}{a^2} = (a - \frac{1}{a})^2 + 2 \): \[ = 3^2 + 2 = 9 + 2 = 11 \] To find \( a^3 - \frac{1}{a^3} \) we use the relation: \[ a^3 - \frac{1}{a^3} = (a - \frac{1}{a})\left(a^2 + 1 + \frac{1}{a^2}\right) = 3\left(11\right) = 33 \] Final answers: a) i) \( a^3 - \frac{1}{a^3} \) ii) \( a^2 + \frac{1}{a^2} = 11 \), \( a^3 - \frac{1}{a^3} = 33 \)