Pregunta
upstudy study bank question image url

Question Factor the expression completely. \[ 24 x^{2}+6 \]

Ask by Hardy Page. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \(24x^{2} + 6\) can be factored as \(6(4x^{2} + 1)\).

Solución

To factor the expression \( 24x^{2} + 6 \) completely, follow these steps: 1. **Identify the Greatest Common Factor (GCF):** Both terms \( 24x^{2} \) and \( 6 \) are divisible by \( 6 \). 2. **Factor out the GCF:** \[ 24x^{2} + 6 = 6(4x^{2} + 1) \] 3. **Check for Further Factoring:** The quadratic expression \( 4x^{2} + 1 \) does not factor further over the real numbers because it cannot be expressed as a product of two binomials with real coefficients. - **Over the Complex Numbers:** If factoring over the complex numbers, \( 4x^{2} + 1 \) can be written as: \[ 4x^{2} + 1 = (2x + i)(2x - i) \] However, unless specified, factoring is typically performed over the real numbers. 4. **Final Factored Form:** Since no further factoring is possible over the real numbers, the completely factored form of the expression is: \[ 6(4x^{2} + 1) \] **Answer:** \(6\left(4\,x^{2} + 1\,\right)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let's factor out the greatest common factor (GCF) from the expression \(24x^{2} + 6\). The GCF of 24 and 6 is 6, so we can factor that out: \[ 6(4x^{2} + 1) \] Next, we examine the expression \(4x^{2} + 1\). This is a sum of squares, and it cannot be factored further using real numbers. Therefore, the completely factored form of the expression is: \[ 6(4x^{2} + 1) \] To get even more fun with factoring, did you know that the expression demonstrates the beauty of algebra? Factoring not only simplifies equations but can also reveal hidden relationships. For example, in more complex polynomial equations, recognizing patterns like sums of squares or perfect squares allows mathematicians to solve higher-degree polynomials more efficiently. When you start factoring, a common mistake is forgetting to look for a GCF first! Always check for the largest number or variable that divides each term without leaving a remainder. This can save you time and simplify your work before diving into more complex techniques like grouping or using the quadratic formula.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad